https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM | Zahrani Putri | JURNAL MEDIA INFORMATIKA BUDIDARMA

Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM

Aufa Zahrani Putri, M Afdal, Siti Monalisa, Inggih Permana

Abstract


PT. XYZ is one of the major pharmaceutical industries in Indonesia by marketing its products through B2B (Business to Business) customers. PT. XYZ doesn't understand what customers need. PT. XYZ also implements a cashback system for B2B customers. This study aims to determine customer segmentation, analysis of customer characteristics, firmgration and proposed strategies provided by researchers to PT. XYZ. Loyalty and customer characteristics are very influential on a company. To show which customers are loyal to the company, the Fuzzy C-Means algorithm is used to cluster and the Davies Bouldien Indeks (DBI) is used for the clustering algorithm results. The algorithm used is according to the Length, Recency, Frequency and Monetary (LRFM) model to classify purchasing behavior. It can be seen from the frequency variable which customers are loyal to which companies are not. Then determine the firmography using the attributes of business entity type, customer type, and location. After determining loyal and non-loyal customers, the analysis of customer characteristics is divided into 4 parts, namely the Superstar Segment or the best customer, which is located in cluster 2 where customers in cluster 2 can have a long-term relationship with the company, then the Golden Segment or which has the second highest value (monetary) is located in cluster 4, then the Average Value Segment or the customer who has the average value of all segments is located in cluster 5 and the Dormant Segment or the lowest customer is located in cluster 3 where customer 3 has little relationship with the company.

Keywords


Fuzzy C-Means Algorithm; Clustering; Firmography; Customer Characteristics; LRFM

Full Text:

PDF

References


A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,†Sistemasi, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.

D. Rahmatya, S. Yulina, and Y. D. L. Widyasari, “Rancang Bangun Aplikasi Penerapan Customer Relationship Management (Crm) Untuk Menjaga Loyalitas Pelanggan (Studi Kasus: Magenta Coklat, Padang),†JSI J. Sist. Inf., vol. 12, no. 2, pp. 2033–2045, 2020, doi: 10.36706/jsi.v12i2.9487.

S. S. Prasetyo, M. Mustafid, and A. R. Hakim, “Penerapan Fuzzy C-Means Kluster Untuk Segmentasi Pelanggan E-Commerce Dengan Metode Recency Frequency Monetary (Rfm),†J. Gaussian, vol. 9, no. 4, pp. 421–433, 2020, doi: 10.14710/j.gauss.v9i4.29445.

D. L. Aditya and D. Fitrianah, “Comparative Study of Fuzzy C-Means and K-Means Algorithm for Grouping Customer Potential in Brand Limback,†J, vol. 3, no. 4, pp. 327–334, 2021, doi: 10.34288/jri.v3i4.241.

I. Maskanah, “Segmentasi Pelanggan Toko Purnama dengan Algoritma K-Means dan Model RFM untuk Perancangan Strategi Pemasaran,†INOVTEK Polbeng - Seri Inform., vol. 5, no. 2, p. 218, 2020, doi: 10.35314/isi.v5i2.1443.

B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi Rfm Model Dan Teknik Clustering,†J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, 2018, doi: 10.21460/jutei.2018.21.76.

A. Ilham, N. Y. Setiawan, and T. Afirianto, “Analisis Segmentasi Pelanggan Kartu Prabayar Kabupaten Malang dengan RFM Model Menggunakan Metode Fuzzy C-Means Clustering (Studi Kasus: PT. XYZ),†J. Pengemb. Teknol. …, vol. 4, no. 8, pp. 2487–2498, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7680

M. T. Dharmawan, N. Y. Setiawan, and F. A. Bachtiar, “Segmentasi Pelanggan Menggunakan Metode Fuzzy C-Means Clustering Berdasarkan LRFM Model Pada Toko Sepatu ( Studi Kasus : Ride Inc Kota Malang ),†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1978–1985, 2019.

R. Andini and Y. P. Astuti, “MATH unesa,†J. Ilm. Mat., vol. 9, no. 2, pp. 437–446, 2021, [Online]. Available: https://media.neliti.com/media/publications/249234-model-infeksi-hiv-dengan-pengaruh-percob-b7e3cd43.pdf

M. Martin and Y. Nataliani, “Klasterisasi kinerja karyawan menggunakan algoritma fuzzy c-means,†Aiti, vol. 17, no. 2, pp. 118–129, 2021, doi: 10.24246/aiti.v17i2.118-129.

A. K. Wijaya, “Implementasi data mining dengan algoritma fuzzy C - Means (studi kasus penjualan di UD Subur Baru),†Jur. Tek. Inform. FASILKOM UDINUS, pp. 1–8, 2014.

F. F. Finansyah and J. Gunawan, “Analisis Perbedaan Perilaku Pelanggan dan Pengguna Media Sosial Maskapai Penerbangan Low-Cost Indonesia,†J. Sains dan Seni ITS, vol. 8, no. 2, 2020, doi: 10.12962/j23373520.v8i2.48506.

S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,†J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 2, p. 152, 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.

V. R. Hananto, A. D. Churniawan, and A. P. Wardhanie, “Perancangan Analytical CRM untuk Mendukung Segmentasi Pelanggan di Institusi Pendidikan,†J. Ilm. Teknol. Inf. Asia, vol. 11, no. 1, p. 79, 2017, doi: 10.32815/jitika.v11i1.55.

rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, “Tugas Akhir Tugas Akhir,†J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.

P. Paduloh, M. Widyantoro, and J. Supratman, “Segmentasi Pelanggan Distributor Daging Sapi Menggunakan Pendekatan Recency, Frequency, Monetary (RFM) dan Fuzzy C-Means Clustering,†J. Optim., vol. 8, no. 1, p. 43, 2022, doi: 10.35308/jopt.v8i1.5181.

A. L. R. Putri and N. Dwidayati, “Analisa Perbandingan K-Means Dan Fuzzy C-Means Dalam Pengelompokan Daerah Penyebaran Covid-19 Indonesia,†UNNES J. Math., vol. 10, no. 2, pp. 4–7, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujme

D. B. Saputra and E. Riksakomara, “Implementasi Fuzzy C-Means dan Model RFM untuk Segmentasi Pelanggan (Studi Kasus : PT. XYZ),†J. Tek. ITS, vol. 7, no. 1, pp. 1–6, 2018, doi: 10.12962/j23373539.v7i1.28230.

L. Waroka, S. Monalisa, D. Anjainah, and N. Arifin, “Implementasi Algoritma Fuzzy C-Means (Fcm) Dalam Pengklasterisasian Nilai Hidup Pelanggan Dengan Model Lrfm,†J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 6, no. 1, p. 1, 2020, doi: 10.24014/rmsi.v6i1.8564.

A. T. Widiyanto and A. Witanti, “Segmentasi Pelanggan Berdasarkan Analisis RFM Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran (Studi Kasus PT Coversuper Indonesia Global),†KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 1, no. 1, pp. 204–215, 2021, doi: 10.24002/konstelasi.v1i1.4293.

M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,†vol. 3, no. 4, pp. 330–338, 2022, doi: 10.47065/josyc.v3i4.2112.

F. Hadi, D. Octari Rahmadia, F. Hadi Nugraha, N. Putri Bulan, Mustakin, and S. Monalisa, “Penerapan K-Means Clustering Berdasarkan RFM Mofek Sebagai Pemetaan dan Pendukung Strategi Pengelolaan Pelanggan (Studi Kasus: PT. Herbal Penawar Alwahidah Indonesia Pekanbaru),†SITEKIN J. Sains, Teknol. dan Ind., vol. 15, no. 1, pp. 69–76, 2017, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/4575




DOI: https://doi.org/10.30865/mib.v7i3.6150

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.