Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM
DOI:
https://doi.org/10.30865/mib.v7i3.6150Keywords:
Fuzzy C-Means Algorithm, Clustering, Firmography, Customer Characteristics, LRFMAbstract
PT. XYZ is one of the major pharmaceutical industries in Indonesia by marketing its products through B2B (Business to Business) customers. PT. XYZ doesn't understand what customers need. PT. XYZ also implements a cashback system for B2B customers. This study aims to determine customer segmentation, analysis of customer characteristics, firmgration and proposed strategies provided by researchers to PT. XYZ. Loyalty and customer characteristics are very influential on a company. To show which customers are loyal to the company, the Fuzzy C-Means algorithm is used to cluster and the Davies Bouldien Indeks (DBI) is used for the clustering algorithm results. The algorithm used is according to the Length, Recency, Frequency and Monetary (LRFM) model to classify purchasing behavior. It can be seen from the frequency variable which customers are loyal to which companies are not. Then determine the firmography using the attributes of business entity type, customer type, and location. After determining loyal and non-loyal customers, the analysis of customer characteristics is divided into 4 parts, namely the Superstar Segment or the best customer, which is located in cluster 2 where customers in cluster 2 can have a long-term relationship with the company, then the Golden Segment or which has the second highest value (monetary) is located in cluster 4, then the Average Value Segment or the customer who has the average value of all segments is located in cluster 5 and the Dormant Segment or the lowest customer is located in cluster 3 where customer 3 has little relationship with the company.References
A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,†Sistemasi, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.
D. Rahmatya, S. Yulina, and Y. D. L. Widyasari, “Rancang Bangun Aplikasi Penerapan Customer Relationship Management (Crm) Untuk Menjaga Loyalitas Pelanggan (Studi Kasus: Magenta Coklat, Padang),†JSI J. Sist. Inf., vol. 12, no. 2, pp. 2033–2045, 2020, doi: 10.36706/jsi.v12i2.9487.
S. S. Prasetyo, M. Mustafid, and A. R. Hakim, “Penerapan Fuzzy C-Means Kluster Untuk Segmentasi Pelanggan E-Commerce Dengan Metode Recency Frequency Monetary (Rfm),†J. Gaussian, vol. 9, no. 4, pp. 421–433, 2020, doi: 10.14710/j.gauss.v9i4.29445.
D. L. Aditya and D. Fitrianah, “Comparative Study of Fuzzy C-Means and K-Means Algorithm for Grouping Customer Potential in Brand Limback,†J, vol. 3, no. 4, pp. 327–334, 2021, doi: 10.34288/jri.v3i4.241.
I. Maskanah, “Segmentasi Pelanggan Toko Purnama dengan Algoritma K-Means dan Model RFM untuk Perancangan Strategi Pemasaran,†INOVTEK Polbeng - Seri Inform., vol. 5, no. 2, p. 218, 2020, doi: 10.35314/isi.v5i2.1443.
B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi Rfm Model Dan Teknik Clustering,†J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, 2018, doi: 10.21460/jutei.2018.21.76.
A. Ilham, N. Y. Setiawan, and T. Afirianto, “Analisis Segmentasi Pelanggan Kartu Prabayar Kabupaten Malang dengan RFM Model Menggunakan Metode Fuzzy C-Means Clustering (Studi Kasus: PT. XYZ),†J. Pengemb. Teknol. …, vol. 4, no. 8, pp. 2487–2498, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7680
M. T. Dharmawan, N. Y. Setiawan, and F. A. Bachtiar, “Segmentasi Pelanggan Menggunakan Metode Fuzzy C-Means Clustering Berdasarkan LRFM Model Pada Toko Sepatu ( Studi Kasus : Ride Inc Kota Malang ),†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1978–1985, 2019.
R. Andini and Y. P. Astuti, “MATH unesa,†J. Ilm. Mat., vol. 9, no. 2, pp. 437–446, 2021, [Online]. Available: https://media.neliti.com/media/publications/249234-model-infeksi-hiv-dengan-pengaruh-percob-b7e3cd43.pdf
M. Martin and Y. Nataliani, “Klasterisasi kinerja karyawan menggunakan algoritma fuzzy c-means,†Aiti, vol. 17, no. 2, pp. 118–129, 2021, doi: 10.24246/aiti.v17i2.118-129.
A. K. Wijaya, “Implementasi data mining dengan algoritma fuzzy C - Means (studi kasus penjualan di UD Subur Baru),†Jur. Tek. Inform. FASILKOM UDINUS, pp. 1–8, 2014.
F. F. Finansyah and J. Gunawan, “Analisis Perbedaan Perilaku Pelanggan dan Pengguna Media Sosial Maskapai Penerbangan Low-Cost Indonesia,†J. Sains dan Seni ITS, vol. 8, no. 2, 2020, doi: 10.12962/j23373520.v8i2.48506.
S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,†J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 2, p. 152, 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.
V. R. Hananto, A. D. Churniawan, and A. P. Wardhanie, “Perancangan Analytical CRM untuk Mendukung Segmentasi Pelanggan di Institusi Pendidikan,†J. Ilm. Teknol. Inf. Asia, vol. 11, no. 1, p. 79, 2017, doi: 10.32815/jitika.v11i1.55.
rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, “Tugas Akhir Tugas Akhir,†J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.
P. Paduloh, M. Widyantoro, and J. Supratman, “Segmentasi Pelanggan Distributor Daging Sapi Menggunakan Pendekatan Recency, Frequency, Monetary (RFM) dan Fuzzy C-Means Clustering,†J. Optim., vol. 8, no. 1, p. 43, 2022, doi: 10.35308/jopt.v8i1.5181.
A. L. R. Putri and N. Dwidayati, “Analisa Perbandingan K-Means Dan Fuzzy C-Means Dalam Pengelompokan Daerah Penyebaran Covid-19 Indonesia,†UNNES J. Math., vol. 10, no. 2, pp. 4–7, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujme
D. B. Saputra and E. Riksakomara, “Implementasi Fuzzy C-Means dan Model RFM untuk Segmentasi Pelanggan (Studi Kasus : PT. XYZ),†J. Tek. ITS, vol. 7, no. 1, pp. 1–6, 2018, doi: 10.12962/j23373539.v7i1.28230.
L. Waroka, S. Monalisa, D. Anjainah, and N. Arifin, “Implementasi Algoritma Fuzzy C-Means (Fcm) Dalam Pengklasterisasian Nilai Hidup Pelanggan Dengan Model Lrfm,†J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 6, no. 1, p. 1, 2020, doi: 10.24014/rmsi.v6i1.8564.
A. T. Widiyanto and A. Witanti, “Segmentasi Pelanggan Berdasarkan Analisis RFM Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran (Studi Kasus PT Coversuper Indonesia Global),†KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 1, no. 1, pp. 204–215, 2021, doi: 10.24002/konstelasi.v1i1.4293.
M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,†vol. 3, no. 4, pp. 330–338, 2022, doi: 10.47065/josyc.v3i4.2112.
F. Hadi, D. Octari Rahmadia, F. Hadi Nugraha, N. Putri Bulan, Mustakin, and S. Monalisa, “Penerapan K-Means Clustering Berdasarkan RFM Mofek Sebagai Pemetaan dan Pendukung Strategi Pengelolaan Pelanggan (Studi Kasus: PT. Herbal Penawar Alwahidah Indonesia Pekanbaru),†SITEKIN J. Sains, Teknol. dan Ind., vol. 15, no. 1, pp. 69–76, 2017, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/4575
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).