https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Analisis Sentimen Pembatalan Indonesia Sebagai Tuan Rumah Piala Dunia FIFA U-20 Menggunakan Naïve Bayes | Setiawan | JURNAL MEDIA INFORMATIKA BUDIDARMA

Analisis Sentimen Pembatalan Indonesia Sebagai Tuan Rumah Piala Dunia FIFA U-20 Menggunakan Naïve Bayes

Harry Setiawan, Ilka Zufria

Abstract


The FIFA U-20 World Cup is a prestigious event for young footballers around the world. Indonesia was originally to host the event in 2023, but FIFA eventually had to cancel the World Cup in Indonesia because some Indonesian public figures did not accept the presence of the Israeli national team in Indonesia at the football match. The refusal was made on security grounds, because the participation of the Israeli national team was considered a potential threat to Indonesia's security, especially considering the Palestinian conflict. Another reason, Indonesia does not have diplomatic relations with Israel, FIFA's decision is enough to cause a variety of opinions both positive and negative. The purpose of this research is to function so that people can be tabayyun by providing solutions by conducting sentiment analysis, namely collecting Twitter user opinions automatically so that they can be useful for the community. The data obtained is 946 tweets after going through the preprocessing stage then the data can be used in the labelling stage using the Lexicon Based method. Grouping is divided into positive sentiment and negative sentiment which is classified by the Naïve Bayes algorithm reinforced by Lexicon Based weighting resulting in positive sentiment as many as 150 tweets with a percentage of 15.86% and negative sentiment as many as 796 tweets with a percentage of 84.14%. From the confusion matrix results, the classification performance with the Naïve Bayes algorithm reinforced with Lexicon Based weighting then produces an accuracy percentage of 84%, with a precision of 86%, a recall of 95% and an f-measure value of 90%.

Keywords


Sentiment analysis; Confusion Matrix; Lexicon Based; Naïve Bayes; World Cup U-20; Twitter

Full Text:

PDF

References


M. S. Alif and A. R. Pratama, “Analisis Kesadaran Keamanan di Kalangan Pengguna E-Wallet di Indonesia,†J. Inf., vol. 2, no. 1, pp. 1–7, 2021, [Online]. Available: https://journal.uii.ac.id/AUTOMATA/article/view/17279

B. W. Sari and F. F. Haranto, “Implementasi Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Telkom Dan Biznet,†J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, 2019, doi: 10.33480/pilar.v15i2.699.

C. Darmawan, H. Silvana, H. N. Zaenudin, and R. Effendi, “Pengembangan hubungan interpersonal remaja dalam penggunaan media sosial di Kota Bandung,†J. Kaji. Komun., vol. 7, no. 2, p. 159, 2019, doi: 10.24198/jkk.v7i2.21163.

A. C. Najib, A. Irsyad, G. A. Qandi, and N. A. Rakhmawati, “Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter,†Fountain Informatics J., vol. 4, no. 2, p. 41, 2019, doi: 10.21111/fij.v4i2.3573.

P. A. Sumitro, Rasiban, D. I. Mulyana, and W. Saputro, “Analisis Sentimen Terhadap Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based,†J-ICOM - J. Inform. dan Teknol. Komput., vol. 2, no. 2, pp. 50–56, 2021, doi: 10.33059/j-icom.v2i2.4009.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,†Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.

S. A. Dainamang, N. Hayatin, and D. R. Chandranegara, “Analisis Sentimen Media Sosial Twiiter terhadap RUU Omnibus Law dengan Metode Naive Bayes dan Particle Swarm Optimization,†Komputika J. Sist. Komput., vol. 11, no. 2, pp. 211–218, 2022, doi: 10.34010/komputika.v11i2.6037.

L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,†Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

M. Hudha, E. Supriyati, and T. Listyorini, “Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier,†JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 1, pp. 1–6, 2022, doi: 10.33387/jiko.v5i1.3376.

A. H. Dyo fatra, N. H. Hayatin, and C. S. K. Aditya, “Analisa Sentimen Tweet Berbahasa Indonesia Dengan Menggunakan Metode Lexicon Pada Topik Perpindahan Ibu Kota Indonesia,†J. Repos., vol. 2, no. 7, p. 977, 2020, doi: 10.22219/repositor.v2i7.937.

R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,†Komputek, vol. 3, no. 2, p. 52, 2019, doi: 10.24269/jkt.v3i2.270.

H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, and M. R. Yeganegi, “Text mining in big data analytics,†Big Data Cogn. Comput., vol. 4, no. 1, pp. 1–34, 2020, doi: 10.3390/bdcc4010001.

R. R. Kurniawan and I. Zufria, “Penerapan Text Mining Pada Sistem Penyeleksian Judul Skripsi Menggunakan Algoritma Latent Dirichlet Allocation (LDA),†Indones. J. Comput. Sci., vol. 11, no. 3, pp. 1036–1052, 2022, [Online]. Available: http://3.8.6.95/ijcs/index.php/ijcs/article/view/3120/84

A. Chamekh, M. Mahfoudh, and G. Forestier, “Sentiment Analysis Based on Deep Learning in E-Commerce,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13369 LNAI, pp. 498–507, 2022, doi: 10.1007/978-3-031-10986-7_40.

A. Ligthart, C. Catal, and B. Tekinerdogan, Systematic reviews in sentiment analysis: a tertiary study, vol. 54, no. 7. Springer Netherlands, 2021. doi: 10.1007/s10462-021-09973-3.

Pemerintah Pusat, “Instruksi Presiden (INPRES) tentang Dukungan Penyelenggaraan FIFA U-20 World Cup Tahun 2021,†SK No 031271 A, 2020 [Online]. Available: https://peraturan.bpk.go.id/Home/Details/145868/inpres-no-8-tahun-2020

FIFA, “FIFA Footbal Stadiums Guidelines,†Fédération Internationale de Football Association, 2022. https://www.fifa.com/technical/stadium-guidelines (accessed May 01, 2023).

FIFA, “FIFA removes Indonesia as host of FIFA U-20 World Cup 2023TM,†Fédération Internationale de Football Association, 2023. https://www.fifa.com/about-fifa/organisation/media-releases/fifa-removes-indonesia-as-host-of-fifa-u-20-world-cup-2023-tm (accessed May 01, 2023).

Samsir, Ambiyar, U. Verawadina, F. Edi, and R. Watrianthos, “Analisis Senitmen Pembelajaran Daring pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naive Bayes,†J. Media Inform. Budidarma, vol. 5, no. 1, p. 149, 2021, doi: 10.30865/mib.v5i1.2604.

M. Arifiansyah Ayub, “Analisis Topik Ekonomi Dengan Algoritma K-Means Pada Media Online Era Pandemi Covid-19 Di Sulawesi Tenggara,†JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 2, pp. 133–138, 2021, doi: 10.33387/jiko.v4i2.3235.

H. Jayadianti, R. Damayanti, and ..., “Latent Semantic Analysis (Lsa) Dan Automatic Text Summarization (Ats) Dalam Optimasi Pencarian Artikel Covid 19,†Semin. Nas. …, vol. 2020, no. Semnasif, pp. 52–59, 2020, [Online]. Available: http://jurnal.upnyk.ac.id/index.php/semnasif/article/view/4085

M. R. Nurhusen, J. Indra, and K. A. Baihaqi, “Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak ( BBM ) Menggunakan Metode Logistic Regression,†vol. 7, pp. 276–282, 2023, doi: 10.30865/mib.v7i1.5491.

Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,†J. Inf. Syst. Manag., vol. 3, no. 2, pp. 44–49, 2021, doi: 10.24076/joism.2021v3i2.558.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,†J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 2, pp. 697–711, 2021.

M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,†J. Media Inform. Budidarma, vol. 6, no. 1, p. 542, 2022, doi: 10.30865/mib.v6i1.3530.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,†J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.




DOI: https://doi.org/10.30865/mib.v7i3.6144

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.