Meningkatkan Kemampuan Model dalam Memprediksi Penyakit Jantung dengan Algoritma NCL dan GridSearchCV
|
Abstract
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 263 timesPDF - 133 times
References
R. Annisa, “ANALISIS KOMPARASI ALGORITMA KLASIFIKASI DATA MINING UNTUK PREDIKSI PENDERITA PENYAKIT JANTUNG,” J. Tek. Inform. Kaputama, vol. 3, pp. 22–28, 2019.
and S. S. M. N, R. A, R. S., “Karakteristik Dan Prevalensi Risiko Penyakit Kardiovaskular Pada Tukang Masak Warung Makan Di Wilayah Kerja Puskesmas Tamalanrea,” J. Kesehat., vol. 11, pp. 30–38, 2018.
A. I. Ayu, E. Widiastuti, R. Cholidah, G. W. Buanayuda and I. B. Alit, “Deteksi Dini Faktor Risiko Penyakit Kardiovaskuler pada Pegawai Rektorat Universitas Mataram,” J. Pengabdi. Magister Pendidik. IPA, vol. 4, pp. 137–142, 2021.
Kemenkes RI, “Cardiovasular Diseases Guideline,” p. 32, 2009.
A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,” J. Ilm. Teknol. dan Rekayasa,” vol. 24, pp. 161–170, 2019.
C. Krittanawong et al., “Machine learning prediction in cardiovascular diseases: a meta-analysis,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-72685-1.
I. Fakhruzi, “An artificial neural network with bagging to address imbalance datasets on clinical prediction,” 2018 Int. Conf. Inf. Commun. Technol. ICOIACT 2018, vol. 2018-Janua, no. 1, pp. 895–898, 2018, doi: 10.1109/ICOIACT.2018.8350824.
A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, Learning From Imbalanced Data Sets. Springer US, 2018. doi: 10.1007/978-3-319-98074-4_5.
S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, “Comparing different supervised machine learning algorithms for disease prediction,” BMC Med. Inform. Decis. Mak., vol. 19, no. 1, pp. 1–16, 2019, doi: 10.1186/s12911-019-1004-8.
P. D. Putra and D. P. Rini, “Prediksi Penyakit Jantung dengan Algoritma Klasifikasi,” Pros. Annu. Res. Semin. 2019, vol. 5, no. 1, pp. 978–979, 2019.
F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, no. 85, pp. 2825–2830, 2011, [Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.html
Z. M. Alhakeem, Y. M. Jebur, S. N. Henedy, H. Imran, L. F. A. Bernardo, and H. M. Hussein, “Prediction of Ecofriendly Concrete Compressive Strength Using Gradient Boosting Regression Tree Combined with GridSearchCV Hyperparameter-Optimization Techniques,” Materials (Basel)., vol. 15, no. 21, p. 7432, 2022, doi: 10.3390/ma15217432.
“Personal Key Indicators of Heart Disease,” 2022.
Anikakapoor, “ML | Data Preprocessing in Python,” GeeksforGeeks, 2023.
F. S. Pamungkas, B. D. Prasetya, and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 692–697, 2020.
R. Ordila, R. Wahyuni, Y. Irawan, and M. Yulia Sari, “PENERAPAN DATA MINING UNTUK PENGELOMPOKAN DATA REKAM MEDIS PASIEN BERDASARKAN JENIS PENYAKIT DENGAN ALGORITMA CLUSTERING (Studi Kasus : Poli Klinik PT.Inecda),” J. Ilmu Komput., vol. 9, no. 2, pp. 148–153, 2020, doi: 10.33060/jik/2020/vol9.iss2.181.
C. A. Ramezan, “Transferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification,” Remote Sens., vol. 14, no. 24, 2022, doi: 10.3390/rs14246218.
S. Farhad Khorshid and A. Mohsin Abdulazeez, “Breast Cancer Diagnosis Based on K-Nearest Neighbors: a Review,” J. Archaeol. Egypt/Egyptology, vol. 18, no. 4, pp. 1927–1951, 2021.
R. D. King, O. I. Orhobor, and C. C. Taylor, “Cross-validation is safe to use,” Nat. Mach. Intell., vol. 3, no. 4, p. 276, 2021, doi: 10.1038/s42256-021-00332-z.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
T. Gneiting and E. M. Walz, “Receiver operating characteristic (ROC) movies, universal ROC (UROC) curves, and coefficient of predictive ability (CPA),” Mach. Learn., vol. 111, no. 8, pp. 2769–2797, 2022, doi: 10.1007/s10994-021-06114-3.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Meningkatkan Kemampuan Model dalam Memprediksi Penyakit Jantung dengan Algoritma NCL dan GridSearchCV
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.