Implementasi K-Means Clustering untuk Analisis Tingkat Pemahaman Computational Thinking Siswa Sekolah Dasar

 (*)Herlina Herlina Mail (Universitas Atma Jaya Yogyakarta, Sleman, Indonesia)
 Zeny Ernaningsih (Universitas Atma Jaya Yogyakarta, Sleman, Indonesia)

(*) Corresponding Author

Submitted: May 8, 2023; Published: July 31, 2023

Abstract

The rapid development of technology impacted the world of education worldwide, including in Indonesia. Good problem-solving skills are needed in this era. Computational thinking (CT) or computational thinking is considered capable of training students in problem-solving skills. This study aims to group students based on CT abilities to help teachers more easily determine learning methods that suit the characteristics of students. The data processing uses the K-Means algorithm with data taken from the results of the Bebras Challenge 2022 for the elementary school level. In the clustering process, the most optimal number of clusters was determined using the Elbow method. The optimal cluster is 3 clusters: namely high, medium and low levels of understanding of CT. The cluster for the SiKecil category has an average value of 81.52 and a duration of 15.07 minutes for the high cluster, an average value of 43.02 and a duration of 24.59 minutes for the medium cluster, and an average value of 34.96 and a duration of 15.28 minutes for the low cluster. The clusters formed for the Siaga category are clusters with a high level of understanding of CT with an average value of 67.13 and a duration of 23.88 minutes, an average value of 56.91 and a duration of 34.76 minutes for the medium cluster, and low cluster with an average value of 32.14 and a duration of 20.79 minutes.

Keywords


Computational Thinking; Primary School; Bebras Challenge; Clustering; K-Means

Full Text:

PDF


Article Metrics

Abstract view : 293 times
PDF - 126 times

References

M. Zulfadhilah, N. Hidayah, P. Studi Teknologi Informasi, F. Sains dan Teknologi, U. Sari Mulia, and K. Selatan, “Pengenalan Aplikasi Android Sebagai Bahan Bantu Pengajaran Mata Pelajaran Kimia SMA,” Jurnal Pengabdian Masyarakat Berkemajuan, vol. 4, no. No.1, pp. 345–348, 2020.

L. Atika Anggrasari, Prosiding Seminar Nasional Sensaseda Model Pembelajaran Computational Thingking Sebagai Inovasi Pembelajaran Sekolah Dasar Pascapandemi Covid-19. 2021.

T. Harmini, P. Annurwanda, and S. Suprihatiningsih, “Computational Thinking Ability Students Based On Gender In Calculus Learning,” AKSIOMA: Jurnal Program Studi Pendidikan Matematika, vol. 9, no. 4, p. 977, Dec. 2020, doi: 10.24127/ajpm.v9i4.3160.

M. Z. Zahid, “Telaah kerangka kerja PISA 2021: era integrasi computational thinking dalam bidang matematika,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 3, pp. 706–713, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

M. Gunawan Supiarmo, dan Elly Susanti, and U. Maulana Malik Ibrahim, “Proses Berpikir Komputasional Siswa Dalam Menyelesaikan Soal Pisa Konten Change And Relationship Berdasarkan Self-Regulated Learning,” Jurnal Numeracy, vol. 8, no. 1, 2021.

T. S. Sukamto et al., “Pengenalan Computational Thinking Sebagai Metode Problem Solving Kepada Guru dan Siswa Sekolah di Kota Semarang THE INTRODUCTION OF COMPUTATIONAL THINKING AS A PROBLEM SOLVING METHOD FOR TEACHERS AND STUDENTS IN SEMARANG CITY,” 2019.

S. Van Borkulo, C. Chytas, P. Drijvers, E. Barendsen, and J. Tolboom, “Computational Thinking in the Mathematics Classroom: Fostering Algorithmic Thinking and Generalization Skills Using Dynamic Mathematics Software,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Oct. 2021. doi: 10.1145/3481312.3481319.

K. M. Rich, A. Yadav, and C. V. Schwarz, “Computational Thinking, Mathematics, and Science: Elementary Teachers’ Perspectives on Integration Undergraduate Science Modeling and Mechanistic Reasoning View project CT4EDU View project,” 2019. [Online]. Available: https://www.researchgate.net/publication/337386137

M. Ansori, “Pemikiran Komputasi (Computational Thinking) dalam Pemecahan Masalah,” DIRASAH, vol. 3, no. 1, 2020, [Online]. Available: https://ejournal.iaifa.ac.id/index.php/dirasah

M. Caroline et al., “Implementasi Computational Thinking Melalui Pemrograman Visual dengan Kolaborasi Mata Pelajaran pada Siswa Menengah Atas,” in Sendimas VI, 2021, pp. 50–55.

G. Lestari Pratiwi, B. Akbar, M. Hamka, and U. Muhammadiyah Hamka, “Pengaruh Model Problem Based Learning Terhadap Keterampilan Computational Thinking Matematis Siswa Kelas IV SdN Kebon Bawang 03 Jakarta,” Didaktik : Jurnal Ilmiah PGSD FKIP Universitas Mandiri, vol. 8, no. No.1, pp. 375–385, 2022.

N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 2, pp. 337–350, Mar. 2022, doi: 10.30812/matrik.v21i2.1411.

Y. Elda, S. Defit, Y. Yunus, and R. Syaljumairi, “Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means,” Jurnal Informasi dan Teknologi, pp. 103–108, Sep. 2021, doi: 10.37034/jidt.v3i3.130.

I. Suputra, I. Candiasa, and I. Suryawan, “Klasterisasi Hasil Ujian Nasional SMA/MA dengan Algoritma K-Means,” Jurnal Matematika, vol. 15, no. 1, 2021.

D. Oktario Dacwanda and Y. Nataliani, “Implementasi k-Means Clustering untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan,” AITI: Jurnal Teknologi Informasi, vol. 18, no. Agustus, pp. 125–138, 2021.

R. Diah Silvia and A. Siska Pramasdyahsari, “Analisis Kemampuan Computational Thinking Siswa Pada Materi Aljabar Ditinjau Dari Pemecahan Masalah Matematis,” Jurnal Pendidikan dan Riset Matematika, vol. 5, no. 2, pp. 2656–4181, 2023, [Online]. Available: http://ejurnal.budiutomomalang.ac.id/index.php/prismatika

N. I. Azizah, Y. Roza, and M. Maimunah, “Computational thinking process of high school students in solving sequences and series problems,” Jurnal Analisa, vol. 8, no. 1, pp. 21–35, Jun. 2022, doi: 10.15575/ja.v8i1.17917.

N. D. Jamna, H. Hamid, and M. T. Bakar, “Analisis Kemampuan Berpikir Komputasi Matematis Siswa SMP Pada Materi Persamaan Kuadrat,” Jurnal Pendidikan Guru Matematika, vol. 2, no. No.3, pp. 278–288, 2022.

M. Rijal Kamil, A. Ihsan Imami, A. Prasetyo Abadi, P. Matematika, and U. Singaperbangsa Karawang, “Analisis kemampuan berpikir komputasional matematis Siswa Kelas IX SMP Negeri 1 Cikampek pada materi pola bilangan,” AKSIOMA : Jurnal Matematika dan Pendidikan Matematika, vol. 12, no. 2, pp. 259–270, 2021.

T. Hardiani, “Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 2, pp. 156–165, Aug. 2022, doi: 10.23887/janapati.v11i2.45376.

T. M. Dista and F. F. Abdulloh, “Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 3, p. 1339, Jul. 2022, doi: 10.30865/mib.v6i3.4172.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi K-Means Clustering untuk Analisis Tingkat Pemahaman Computational Thinking Siswa Sekolah Dasar

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.