Model Clustering Zona Kesesuaian Lahan menggunakan Kombinasi Algoritma Fuzzy C-Means dan Partition Coefficient Index
DOI:
https://doi.org/10.30865/mib.v7i3.6097Keywords:
Land Compatibility, C-Means, PCI, Clustering, FuzzyAbstract
The agricultural sector is one of the vital supporters of national development. The planning of a good agricultural system needs to be supported by looking at the characteristics of each region. The diversity of agricultural areas in Indonesia needs to be simplified by classification according to their similar characteristics. This study aims to group the area of land suitability in an agricultural area. Clustering is obtained using the Fuzzy C-Means algorithm that is validated using the Partition Coefficient Index. Agriculture zone clusters are obtained from the identification of the characteristics of the slope, height, and rainfall of each region. It produced three clusters of land-compatibility zones with almost identical degree of membership. The Partition Coefficient Index algorithm is used to validate the resulting cluster. The results of these three clusters are valid, with PCI membership degrees already grouped according to each cluster. There are two points in the cluster 1, seven points in cluster 2, and eight points on cluster 3.The three clusters that have been generated can facilitate the identification of suitable agricultural land according to their respective characteristics.References
U. F. Kurniawati et al., “Pengolahan Data Berbasis Sistem Informasi Geografis (SIG) Untuk Kebutuhan Penyusunan Profil di Kecamatan Sukolilo,†Sewagati, vol. 4, no. 3, pp. 190–196, Apr. 2022, [Online]. Available: https://journal.its.ac.id/index.php/sewagati/article/view/363
S. Darma, “Kesesuaian Lahan Padi Sawah di Desa Bumi Rapak dan Desa Selangkau Kabupaten Kutai Timur,†Jurnal Ilmu Tanah dan Lingkungan, vol. 24, no. 1, pp. 32–38, Jun. 2022, doi: 10.29244/jitl.24.1.32-38.
R. Froese, J. W. Klassen, C. K. Leung, and T. S. Loewen, “The Border K-Means Clustering Algorithm for One Dimensional Data,†in 2022 IEEE International Conference on Big Data and Smart Computing (BigComp), IEEE, Jan. 2022, pp. 35–42. doi: 10.1109/BigComp54360.2022.00017.
R. Gustrianda and D. I. Mulyana, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 27, Jan. 2022, doi: 10.30865/mib.v6i1.3294.
Y. Jin, D. O’Connor, Y. S. Ok, D. C. W. Tsang, A. Liu, and D. Hou, “Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis,†Environ Int, vol. 124, pp. 320–328, Mar. 2019, doi: 10.1016/j.envint.2019.01.024.
S. S. Prasetyo, M. Mustafid, and A. R. Hakim, “Penerapan Fuzzy C-Means Kluster untuk Segmentasi Pelanggan E-Commerce dengan Metode Recency Frequency Monetary (RFM),†Jurnal Gaussian, vol. 9, no. 4, pp. 421–433, Dec. 2020, doi: 10.14710/j.gauss.v9i4.29445.
Q. Xu, Q. Zhang, J. Liu, and B. Luo, “Efficient synthetical clustering validity indexes for hierarchical clustering,†Expert Syst Appl, vol. 151, p. 113367, Aug. 2020, doi: 10.1016/j.eswa.2020.113367.
E. Zhu, Y. Zhang, P. Wen, and F. Liu, “Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index,†Neurocomputing, vol. 363, pp. 149–170, Oct. 2019, doi: 10.1016/j.neucom.2019.07.048.
R. Ünlü and P. Xanthopoulos, “Estimating the number of clusters in a dataset via consensus clustering,†Expert Syst Appl, vol. 125, pp. 33–39, Jul. 2019, doi: 10.1016/j.eswa.2019.01.074.
R. Rustiyan and M. Mustakim, “Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi,†Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 2, p. 171, May 2018, doi: 10.25126/jtiik.201852605.
S. Mashfuufah and D. Istiawan, “Penerapan partition entropy index, partition coefficient index dan xie beniindex untuk penentuan jumlah klaster optimal pada algoritma fuzzy c-means dalam pemetaan tingkat kesejahteraan penduduk jawa tengah,†in Prosiding University Research Colloquium, 2018, pp. 51–60.
A. N. M. H. Yansah, E. Y. Puspaningrum, and A. M. Rizky, “Implementasi kombinasi metode rfm dan algoritma kmeans untuk klasterisasi penjualan minuman kemasan,†in Prosiding Seminar Nasional Informatika Bela Negara, 2021, pp. 122–126.
D. David, M. D. Lauro, and D. E. Herwindiati, “Sistem Prediksi Customer Loyalty Dengan Metode RFM dan Fuzzy C-Means,†Computatio: Journal of Computer Science and Information Systems, vol. 4, no. 1, pp. 33–44, 2020.
V. Hermawati and R. Sulaiman, “Penentuan Segmentasi Pelanggan E-Commerce Menggunakan Fuzzy C-Means dan Model Fuzzy RFM,†MATHunesa: Jurnal Ilmiah Matematika, vol. 9, no. 1, pp. 76–88, Jan. 2021, doi: 10.26740/mathunesa.v9n1.p76-88.
K. E. Setiawan, A. Kurniawan, A. Chowanda, and D. Suhartono, “Clustering models for hospitals in Jakarta using fuzzy c-means and k-means,†Procedia Comput Sci, vol. 216, pp. 356–363, 2023, doi: 10.1016/j.procs.2022.12.146.
R. Desrianti and H. D. Wijaya, “Implementasi algoritma Fuzzy C-Means pada aplikasi seleksi karyawan digital talent di PT Telekomunikasi Indonesia,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 4, pp. 879–888, 2020.
S. Mashfuufah and D. Istiawan, “Penerapan partition entropy index, partition coefficient index dan xie beniindex untuk penentuan jumlah klaster optimal pada algoritma fuzzy c-means dalam pemetaan tingkat kesejahteraan penduduk jawa tengah,†in Prosiding University Research Colloquium, 2018, pp. 51–60.
Z. Lu, Y. Qiu, and T. Zhan, “Neutrosophic C-means clustering with local information and noise distance-based kernel metric image segmentation,†J Vis Commun Image Represent, vol. 58, pp. 269–276, Jan. 2019, doi: 10.1016/j.jvcir.2018.11.045.
B. A. Kusuma, “Penentuan Kurva Kelengkungan Tulang Belakang pada Citra X-ray Skoliosis Menggunakan Metode Fuzzy C-Means,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 3, no. 1, p. 9, Mar. 2019, doi: 10.30865/mib.v3i1.992.
Anggara Cahya Putra and K. Dwi Hartomo, “Optimalisasi Penyaluran Bantuan Pemerintah Untuk UMKM Menggunakan Metode Fuzzy C-Means,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 474–482, Jun. 2021, doi: 10.29207/resti.v5i3.2980.
D. A. Wicaksono and Y. A. Susetyo, “Clustering Zonasi Daerah Rawan Bencana Alam di Provinsi Sumatera Barat Menggunakan Algoritma K-Means dan Library Geopandas,†Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 4, no. 2, pp. 426–438, May 2023, doi: 10.35870/jimik.v4i2.225.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).