Data Mining Klasifikasi Breast Cancer Menerapkan Algoritma Gradient Boosted Trees
DOI:
https://doi.org/10.30865/mib.v7i2.6095Keywords:
Data Mining, Classification, Gradient Boosted Trees Algorithm, Breast CancerAbstract
Cancer is a deadly disease that is often experienced suddenly. Cancer is suffered not only among adults and the elderly, but even small children who are just born can also suffer from cancer. There are many types of cancer that have almost the same symptoms but different types and there are also levels of seriousness (danger) of these cancers, ranging from common cancers to malignant cancers that have significant changes to the body. There are many types of cancer, one of which is breast cancer, which is more common in women. This type of cancer often occurs in adult women and the elderly. In this study, to facilitate the diagnosis of breast cancer, a classification method was applied. By making an early diagnosis can reduce the mortality rate, previous diagnosis is done by utilizing image media (PET scan and CT scan) which takes a long time so it is considered less efficient. The classification algorithm used is gradient boosted trees. The test was carried out using the rapidminer application as a tester to determine the accuracy of the algorithm and also the AUC size obtained using information gain. The final result after applying the gradient boosted method produces an accuracy rate of 58.52%, this is considered less effective to use so this algorithm is not suitable to be used as a prediction of breast cancer. Precision of 64.25% and recall of only 69.44%.References
A. D. Achmad, “KLASIFIKASI BREAST CANCER MENGGUNAKAN METODE LOGISTIC REGRESSION,†vol. 9, no. 1, 2022.
E. Widyanengsih et al., “Review Artikel : Sistem Penghantaran Obat Nanopartikel Pada Sel Kanker ,†J. Pendidik. dan Konseling, vol. 5, no. 1 SE-Articles, pp. 1133–1138, 2023, [Online]. Available: http://journal.universitaspahlawan.ac.id/index.php/jpdk/article/view/11122
R. Sistem, P. Cart, and D. Kanker, “JURNAL RESTI,†vol. 1, no. 10, pp. 805–812, 2021.
S. E. Herni Yulianti, Oni Soesanto, and Yuana Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,†J. Math. Theory Appl., vol. 4, no. 1, pp. 21–26, 2022, doi: 10.31605/jomta.v4i1.1792.
H. Priyono, R. Sari, and T. Mardiana, “Klasifikasi Pemilihan Jurusan Sekolah Menengah Kejuruan Menggunakan Gradient Boosting Classifier,†J. Inform., vol. 9, no. 2, pp. 131–139, 2022, doi: 10.31294/inf.v9i2.12654.
E. Ismanto and M. Novalia, “Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas,†Techno.Com, vol. 20, no. 3, pp. 400–410, 2021, doi: 10.33633/tc.v20i3.4576.
A. Z. Siregar, “Implementasi Metode Regresi Linier Berganda Dalam Estimasi Tingkat Pendaftaran Mahasiswa Baru,†Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 2, no. 3, pp. 133–137, 2021, [Online]. Available: https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/73
S. S. S, A. T. Purba, V. Marudut, M. Siregar, T. Komputer, and P. B. Indonesia, “SISTEM PENDUKUNG KEPUTUSAN KELAYAKAN PEMBERIAN PINJAMAN,†vol. 3, pp. 25–30, 2020, doi: 10.37600/tekinkom.v3i1.131.
B. S. Pranata and D. P. Utomo, “Penerapan Data Mining Algoritma FP-Growth Untuk Persediaan Sparepart Pada Bengkel Motor (Study Kasus Bengkel Sinar Service),†Bull. Inf. Technol., vol. 1, no. 2, pp. 83–91, 2020.
G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) :,†Telematika, vol. 4, no. 1, pp. 118–132, 2012.
F. O. Lusiana, I. Fatma, and A. P. Windarto, “Estimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Simalungun,†J. Informatics Manag. Inf. Technol., vol. 1, no. 2, pp. 79–84, 2021, [Online]. Available: https://hostjournals.com/
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,†J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.
A. Wanto et al., Data Mining: Algoritma dan Implementasi. Yayasan kita menulis, 2020.
N. L. W. S. R. Ginantra et al., Data mining dan penerapan algoritma. Yayasan Kita Menulis, 2021.
F. Harahap, “Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita,†TIN Terap. Inform. Nusant., vol. 2, no. 4, pp. 191–197, 2021.
B. Harli Trimulya Suandi As and L. Zahrotun, “PENERAPAN DATA MINING DALAM MENGELOMPOKKAN DATA RIWAYAT AKADEMIK SEBELUM KULIAH DAN DATA KELULUSAN MAHASISWA MENGGUNAKAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING (Implementation Of Data Mining In Grouping Academic History Data Before Students And Stud,†J. Teknol. Informasi, Komput. dan Apl., vol. 3, no. 1, pp. 62–71, 2021, [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/
M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,†J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori dan FP-Growth sebagai Dasar Pertimbangan Penentuan Paket Sembako,†Proceeding SENDIU 2020, vol. 6, pp. 36–42, 2020.
A. S. L. T. T. H. Hafizah, “Data Mining Estimasi Biaya Produksi Ikan Kembung Rebus Dengan Regresi Linier Berganda,†J. Sist. Inf. Triguna Dharma (JURSI TGD), no. Vol 1, No 6 (2022): EDISI NOVEMBER 2022, pp. 888–897, 2022, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsi/article/view/5732/1938
Y. L. Nainel, E. Buulolo, and I. Lubis, “Penerapan Data Mining Untuk Estimasi Penjualan Obat Berdasarkan Pengaruh Brand Image Dengan Algoritma Expectation Maximization (Studi Kasus: PT. Pyridam Farma Tbk),†JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 214, 2020, doi: 10.30865/jurikom.v7i2.2097.
D. N. Batubara and A. P. Windarto, “Analisa Klasifikasi Data Mining Pada Tingkat Kepuasan Pengunjung Taman Hewan Pematang Siantar Dengan Algoritma,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 588–592, 2019, doi: 10.30865/komik.v3i1.1664.
K. F. Irnanda, D. Hartama, and A. P. Windarto, “Analisa Klasifikasi C4.5 Terhadap Faktor Penyebab Menurunnya Prestasi Belajar Mahasiswa Pada Masa Pandemi,†J. Media Inform. Budidarma, vol. 5, no. 1, p. 327, 2021, doi: 10.30865/mib.v5i1.2763.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).