Data Mining Penentuan Jurusan Siswa Menggunakan Metode Agglomerative Hierarchical Clustering (AHC
DOI:
https://doi.org/10.30865/mib.v7i2.6092Keywords:
Data Mining, AHC Method, Student MajorsAbstract
There are various students who experience problems during the learning process because the chosen major does not match their abilities because choosing a major is only influenced by other people so that it is not in accordance with their abilities and a teacher is also difficult to adjust the abilities of one student to other students. In order for these students to be grouped with students who have the same level of knowledge, a grouping is carried out using data mining techniques in order to obtain new information in a database that has a large size or large amount of data to make it easier for users to obtain this information. The method used is AHC which is utilized as clustering with the single linkage method, the single link method is considered more effective than other methods because the problem is very suitable where the grouping process is carried out based on each criterion of the distance between all alternatives. The criteria used were three criteria (Science Score, IPS Score, TPA Score) with a total of 121 students. The application of the AHC method is carried out by utilizing rapidminer so that the results obtained are more efficient and effective. The results that can be used by the school are cluster 0 totaling 93 students, cluster 1 totaling 10 students, cluster 2 totaling 10 students and cluster 3 totaling 8 students.References
Y. Andini, J. T. Hardinata, Y. P. Purba, “Penerapan Data Mining pada Tata Letak Buku Di Perpustakaan Sintong Bingei Pematangsiantar dengan Metode Aprioriâ€, Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika), vol. 7, no. 1, pp. 13–18, 2022.
I. Zulfa, R. Rayuwati, K. Koko, “Implementasi data mining untuk menentukan strategi penjualan buku bekas dengan pola pembelian konsumen menggunakan metode aprioriâ€, Teknika: Jurnal Sains dan Teknologi, vol. 16, no. 1, pp. 69–82, 2020.
S. Handoko, F. Fauziah, E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clusteringâ€, Jurnal Ilmiah Teknologi dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020.
B. Wira, A. E. Budianto, A. S. Wiguna, “Implementasi Metode K-Medoids Clustering Untuk Mengetahui Pola Pemilihan Program Studi Mahasiwa Baru Tahun 2018 Di Universitas Kanjuruhan Malangâ€, Rainstek: Jurnal Terapan Sains & Teknologi, vol. 1, no. 3, pp. 53–68, 2019.
A. Setiawan, I. G. Anugrah, “Penentuan pola pembelian konsumen pada indomaret gkb gresik dengan metode fp-growthâ€, Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), vol. 2, no. 2, pp. 115–125, 2019.
A. F. O. Pasaribu, “Analisis Pola Menggunakan Metode C4. 5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus: Sman 1 Natar)â€, Jurnal Teknologi Dan Sistem Informasi, vol. 2, no. 1, pp. 80–85, 2021.
A. Susanti, “Perancangan sistem pendukung keputusan penentuan jurusan siswa SMA Negeri 2 Kutacane berbasis web dengan menggunakan metode Analytical Hierarchy Process (AHP)â€, Jurnal Multimedia dan Teknologi Informasi (Jatilima), vol. 3, no. 02, pp. 68–74, 2021.
F. Agustina, A. T. Sumpala, A. Arysespajayadi, “SPK Pemilihan Jurusan Siswa Baru Menggunakan Metode AHP dan MOORA Pada SMKN 1 Kolakaâ€, Jurnal Sains Dan Informatika, vol. 7, no. 1, pp. 87–96, 2021.
A. N. Fadhilah, A. Jananto, “KLASTERISASI LITERATUR MAHASISWA MENGGUNAKAN METODE AHC DI DINAS KEARSIPAN DAN PERPUSTAKAAN PROVINSI JAWA TENGAHâ€2021.
G. Gunadi, D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) :â€, Telematika, vol. 4, no. 1, pp. 118–132, 2012.
S. S. S et al., “SISTEM PENDUKUNG KEPUTUSAN KELAYAKAN PEMBERIAN PINJAMANâ€vol. 3, pp. 25–30, 2020, doi:10.37600/tekinkom.v3i1.131.
S. Al Syahdan, A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kotaâ€, Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 1, no. 2, 2018, doi:10.32672/jnkti.v1i2.771.
A. Wanto et al., Data Mining: Algoritma dan Implementasi, Yayasan kita menulis, 2020.
N. L. W. S. R. Ginantra et al., Data mining dan penerapan algoritma, Yayasan Kita Menulis, 2021.
Marjiyono, “Penerapan Algoritma Ahc Algorithm Dalam Aplikasi Ppembagian Kelas Siswa Baruâ€, Seminar Nasional Teknologi Informasi dan Multimedia 2015, pp. 6–8, 2015.
B. Harli Trimulya Suandi As, L. Zahrotun, “PENERAPAN DATA MINING DALAM MENGELOMPOKKAN DATA RIWAYAT AKADEMIK SEBELUM KULIAH DAN DATA KELULUSAN MAHASISWA MENGGUNAKAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING (Implementation Of Data Mining In Grouping Academic History Data Before Students And Studâ€, Jurnal Teknologi Informasi, Komputer dan Aplikasinya, vol. 3, no. 1, pp. 62–71, 2021.
R. A. Setyawan, R. M. Fadilla, “Klasterisasi media pembelajaran daring di era pandemi COVID-19 menggunakan metode Agglomerativeâ€, Informasi Interaktif, vol. 5, no. 3, 2020.
P. Govender, V. Sivakumar, “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019)â€, Atmospheric pollution research, vol. 11, no. 1, pp. 40–56, 2020.
C. Briggs, Z. Fan, P. Andras, “Federated learning with hierarchical clustering of local updates to improve training on non-IID dataâ€, 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9, 2020.
K. Zeng et al., “Hierarchical clustering with hard-batch triplet loss for person re-identificationâ€, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13657–13665, 2020.
N. K. Zuhal, “Study Comparison K-Means Clustering dengan Algoritma Hierarchical Clusteringâ€, Prosiding Seminar Nasional Teknologi dan Sains, vol. 1, pp. 200–205, 2022.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).