Klasifikasi Citra Stroke Menggunakan Augmentasi dan Convolutional Neural Network EfficientNet-B0

Authors

  • Nadila Handayani Putri Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Jasril Jasril Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Muhammad Irsyad Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Surya Agustian Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru http://orcid.org/0000-0002-9631-8237
  • Febi Yanto Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru

DOI:

https://doi.org/10.30865/mib.v7i2.5981

Keywords:

Augmentation, CNN, Deep Learning, EfficientNet-B0, Stroke Images

Abstract

A stroke is a sudden onset of brain dysfunction, lasting for 24 hours or longer, resulting from clinically focal and global brain dysfunction. As many as 15 million people die from stroke each year. The stroke patients need an immediate treatment to minimize the risk of brain damage. One of the proponents for the stroke diagnosis is through a computed tomography (CT) image. In recent years, the image processing techniques capable to detect stroke patterns in a brain image, it can be useful for doctors and radiologists in doing diagnosis and treatment. This study aims to compare the level of accuracy using augmentation and without augmentation and hyperparameters using the Convolutional Neural Network in the EfficientNet-B0 architecture to classify ischemic, hemorrhagic, and normal brain stroke images. The data augmentation is produced by rotating, horizontal flipping, and contrast tuning of the original data. Testing data is provided as much as 20% of the portion of the original and augmented data, and the other 80% is used for the training process to find the optimal model. The model search is based on the composition of the training and validation data with a ratio of 70:30, 80:20 and 90:10. The experimental results show that the best performance is obtained for the combined original and augmented images, with accuracies of 97%, 93%, and 94%, respectively, for the three types of data-test: original, augmented, and combined. The merging of original and augmentated images for training data has shown that the model is robust enough in producing high accuracy results.

References

N. Permatasari, “Perbandingan Stroke Non Hemoragik dengan Gangguan Motorik Pasien Memiliki Faktor Resiko Diabetes Melitus dan Hipertensi,†Jurnal Ilmiah Kesehatan Sandi Husada, vol. 11, no. 1, pp. 298–304, 2020, doi: 10.35816/jiskh.v10i2.273.

“Begini Cara Mengenali Gejala Stroke,†Kementerian Kesehatan Republik Indonesia, Oct. 02, 2019. https://www.kemkes.go.id/article/view/19102900002/begini-cara-mengenali-gejala-stroke.html (accessed Mar. 14, 2023).

“Stroke, Cerebrovascular accident,†WHO EMRO. https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed Mar. 14, 2023).

M. I. Fuadi, D. P. Nugraha, and E. Bebasari, “Gambaran obesitas pada pasien stroke akut di Rumah Sakit Umum DaerahArifin Achmad Provinsi Riau periode Januari-Desember 2019,†Jurnal Kedokteran Syiah Kuala, vol. 20, no. 1, Apr. 2020, doi: 10.24815/jks.v20i1.18293.

R. E. Yunus, L. K. Putri, and F. Afif, “Peran CT Scan dan MRI dalam Diagnosis Stroke,†Rumah Sakit Universitas Indonesia, 2022. https://rs.ui.ac.id/umum/berita-artikel/artikel-populer/peran-ct-scan-dan-mri-dalam-diagnosis-stroke (accessed Mar. 16, 2023).

Y. Yueniwati, Pencitraan pada Stroke, Cetakan Pertama. Malang: UB Press, 2016.

Md. M. Islam, S. Akter, Md. Rokunojjaman, J. H. Rony, A. Amin, and S. Kar, “Stroke Prediction Analysis using Machine Learning Classifiers and Feature Technique,†International Journal of Electronics and Communications Systems, vol. 1, no. 2, pp. 57–62, Dec. 2021, doi: 10.24042/ijecs.v1i2.10393.

P. Govindarajan, R. K. Soundarapandian, A. H. Gandomi, R. Patan, P. Jayaraman, and R. Manikandan, “Classification of stroke disease using machine learning algorithms,†Neural Comput Appl, vol. 32, no. 3, pp. 817–828, Feb. 2020, doi: 10.1007/s00521-019-04041-y.

K. L. Kohsasih et al., “Analisis Perbandingan Algoritma Convolutional Neural Network dan Algoritma Multi-layer Perceptron Neural dalam Klasifikasi Citra Sampah,†2021. [Online]. Available: http://ejournal.stmik-time.ac.id

M. F. Naufal, “ANALISIS PERBANDINGAN ALGORITMA SVM, KNN, DAN CNN UNTUK KLASIFIKASI CITRA CUACA,†Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, Apr. 2021, doi: 10.25126/jtiik.202184553.

D. R. Pereira, P. P. R. Filho, G. H. de Rosa, J. P. Papa, and V. H. C. de Albuquerque, “Stroke Lesion Detection Using Convolutional Neural Networks,†in 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–6. doi: 10.1109/IJCNN.2018.8489199.

J. T. Marbun, Seniman, and U. Andayani, “Classification of stroke disease using convolutional neural network,†in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2018. doi: 10.1088/1742-6596/978/1/012092.

M. S. Atshan and Z. N. Nemer, “Pre-Diagnosing the Stroke Using Deep Learning,†Journal of Al-Qadisiyah for Computer Science and Mathematics, vol. 14, no. 3, pp. 33–43, 2022, doi: 10.29304/jqcm.2022.14.3.984.

A. K. Nugroho, Dinar Mutiara Kusumo Nugraheni, Terawan Agus Putranto, I Ketut Eddy Purnama, and Mauridhi Hery Purnomo, “Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI,†EMITTER International Journal of Engineering Technology, pp. 195–216, Jun. 2022, doi: 10.24003/emitter.v10i1.694.

X. Zhu, J. Yuan, Y. Xiao, Y. Zheng, and Z. Qin, “Stroke classification for sketch segmentation by fine-tuning a developmental VGGNet16,†Multimed Tools Appl, vol. 79, no. 45–46, pp. 33891–33906, Dec. 2020, doi: 10.1007/s11042-020-08706-y.

S. P. Adam, S. A. N. Alexandropoulos, P. M. Pardalos, and M. N. Vrahatis, “No free lunch theorem: A review,†in Springer Optimization and Its Applications, Springer International Publishing, 2019, pp. 57–82. doi: 10.1007/978-3-030-12767-1_5.

J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,†Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi: 10.11989/JEST.1674-862X.80904120.

S. B. Jadhav, V. R. Udupi, and S. B. Patil, “Convolutional neural networks for leaf image-based plant disease classification,†IAES International Journal of Artificial Intelligence, vol. 8, no. 4, pp. 328–341, Dec. 2019, doi: 10.11591/ijai.v8.i4.pp328-341.

Hendriyana and Y. H. Maulana, “Identifikasi Jenis Kayu menggunakan Convolutional Neural Network dengan Arsitektur Mobilenet,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 1, pp. 70–76, 2020, Accessed: Mar. 14, 2023. [Online]. Available: https://doi.org/10.29207/resti.v4i1.1445

T. Samitha, “Brain Tumor Classification using EfficientNet Models,†International Research Journal of Engineering and Technology, vol. 9, no. 8, Aug. 2022, [Online]. Available: www.irjet.net

E. Luz et al., “Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images,†Res. Biomed. Eng, vol. 38, pp. 149–122, 2022, doi: 10.1007/s42600-021-00151-6/Published.

Downloads

Published

2023-04-27

Issue

Section

Articles