Klasifikasi Citra Stroke Menggunakan Augmentasi dan Convolutional Neural Network EfficientNet-B0
DOI:
https://doi.org/10.30865/mib.v7i2.5981Keywords:
Augmentation, CNN, Deep Learning, EfficientNet-B0, Stroke ImagesAbstract
A stroke is a sudden onset of brain dysfunction, lasting for 24 hours or longer, resulting from clinically focal and global brain dysfunction. As many as 15 million people die from stroke each year. The stroke patients need an immediate treatment to minimize the risk of brain damage. One of the proponents for the stroke diagnosis is through a computed tomography (CT) image. In recent years, the image processing techniques capable to detect stroke patterns in a brain image, it can be useful for doctors and radiologists in doing diagnosis and treatment. This study aims to compare the level of accuracy using augmentation and without augmentation and hyperparameters using the Convolutional Neural Network in the EfficientNet-B0 architecture to classify ischemic, hemorrhagic, and normal brain stroke images. The data augmentation is produced by rotating, horizontal flipping, and contrast tuning of the original data. Testing data is provided as much as 20% of the portion of the original and augmented data, and the other 80% is used for the training process to find the optimal model. The model search is based on the composition of the training and validation data with a ratio of 70:30, 80:20 and 90:10. The experimental results show that the best performance is obtained for the combined original and augmented images, with accuracies of 97%, 93%, and 94%, respectively, for the three types of data-test: original, augmented, and combined. The merging of original and augmentated images for training data has shown that the model is robust enough in producing high accuracy results.
References
N. Permatasari, “Perbandingan Stroke Non Hemoragik dengan Gangguan Motorik Pasien Memiliki Faktor Resiko Diabetes Melitus dan Hipertensi,†Jurnal Ilmiah Kesehatan Sandi Husada, vol. 11, no. 1, pp. 298–304, 2020, doi: 10.35816/jiskh.v10i2.273.
“Begini Cara Mengenali Gejala Stroke,†Kementerian Kesehatan Republik Indonesia, Oct. 02, 2019. https://www.kemkes.go.id/article/view/19102900002/begini-cara-mengenali-gejala-stroke.html (accessed Mar. 14, 2023).
“Stroke, Cerebrovascular accident,†WHO EMRO. https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed Mar. 14, 2023).
M. I. Fuadi, D. P. Nugraha, and E. Bebasari, “Gambaran obesitas pada pasien stroke akut di Rumah Sakit Umum DaerahArifin Achmad Provinsi Riau periode Januari-Desember 2019,†Jurnal Kedokteran Syiah Kuala, vol. 20, no. 1, Apr. 2020, doi: 10.24815/jks.v20i1.18293.
R. E. Yunus, L. K. Putri, and F. Afif, “Peran CT Scan dan MRI dalam Diagnosis Stroke,†Rumah Sakit Universitas Indonesia, 2022. https://rs.ui.ac.id/umum/berita-artikel/artikel-populer/peran-ct-scan-dan-mri-dalam-diagnosis-stroke (accessed Mar. 16, 2023).
Y. Yueniwati, Pencitraan pada Stroke, Cetakan Pertama. Malang: UB Press, 2016.
Md. M. Islam, S. Akter, Md. Rokunojjaman, J. H. Rony, A. Amin, and S. Kar, “Stroke Prediction Analysis using Machine Learning Classifiers and Feature Technique,†International Journal of Electronics and Communications Systems, vol. 1, no. 2, pp. 57–62, Dec. 2021, doi: 10.24042/ijecs.v1i2.10393.
P. Govindarajan, R. K. Soundarapandian, A. H. Gandomi, R. Patan, P. Jayaraman, and R. Manikandan, “Classification of stroke disease using machine learning algorithms,†Neural Comput Appl, vol. 32, no. 3, pp. 817–828, Feb. 2020, doi: 10.1007/s00521-019-04041-y.
K. L. Kohsasih et al., “Analisis Perbandingan Algoritma Convolutional Neural Network dan Algoritma Multi-layer Perceptron Neural dalam Klasifikasi Citra Sampah,†2021. [Online]. Available: http://ejournal.stmik-time.ac.id
M. F. Naufal, “ANALISIS PERBANDINGAN ALGORITMA SVM, KNN, DAN CNN UNTUK KLASIFIKASI CITRA CUACA,†Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, Apr. 2021, doi: 10.25126/jtiik.202184553.
D. R. Pereira, P. P. R. Filho, G. H. de Rosa, J. P. Papa, and V. H. C. de Albuquerque, “Stroke Lesion Detection Using Convolutional Neural Networks,†in 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–6. doi: 10.1109/IJCNN.2018.8489199.
J. T. Marbun, Seniman, and U. Andayani, “Classification of stroke disease using convolutional neural network,†in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2018. doi: 10.1088/1742-6596/978/1/012092.
M. S. Atshan and Z. N. Nemer, “Pre-Diagnosing the Stroke Using Deep Learning,†Journal of Al-Qadisiyah for Computer Science and Mathematics, vol. 14, no. 3, pp. 33–43, 2022, doi: 10.29304/jqcm.2022.14.3.984.
A. K. Nugroho, Dinar Mutiara Kusumo Nugraheni, Terawan Agus Putranto, I Ketut Eddy Purnama, and Mauridhi Hery Purnomo, “Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI,†EMITTER International Journal of Engineering Technology, pp. 195–216, Jun. 2022, doi: 10.24003/emitter.v10i1.694.
X. Zhu, J. Yuan, Y. Xiao, Y. Zheng, and Z. Qin, “Stroke classification for sketch segmentation by fine-tuning a developmental VGGNet16,†Multimed Tools Appl, vol. 79, no. 45–46, pp. 33891–33906, Dec. 2020, doi: 10.1007/s11042-020-08706-y.
S. P. Adam, S. A. N. Alexandropoulos, P. M. Pardalos, and M. N. Vrahatis, “No free lunch theorem: A review,†in Springer Optimization and Its Applications, Springer International Publishing, 2019, pp. 57–82. doi: 10.1007/978-3-030-12767-1_5.
J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,†Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi: 10.11989/JEST.1674-862X.80904120.
S. B. Jadhav, V. R. Udupi, and S. B. Patil, “Convolutional neural networks for leaf image-based plant disease classification,†IAES International Journal of Artificial Intelligence, vol. 8, no. 4, pp. 328–341, Dec. 2019, doi: 10.11591/ijai.v8.i4.pp328-341.
Hendriyana and Y. H. Maulana, “Identifikasi Jenis Kayu menggunakan Convolutional Neural Network dengan Arsitektur Mobilenet,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 1, pp. 70–76, 2020, Accessed: Mar. 14, 2023. [Online]. Available: https://doi.org/10.29207/resti.v4i1.1445
T. Samitha, “Brain Tumor Classification using EfficientNet Models,†International Research Journal of Engineering and Technology, vol. 9, no. 8, Aug. 2022, [Online]. Available: www.irjet.net
E. Luz et al., “Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images,†Res. Biomed. Eng, vol. 38, pp. 149–122, 2022, doi: 10.1007/s42600-021-00151-6/Published.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).