Implementasi Metode Convolutional Neural Network Untuk Identifikasi Citra Digital Daun

Authors

  • Asmaul Husnah Nasrullah Universitas Ichsan Gorontalo, Gorontalo
  • Haditsah Annur Universitas Ichsan Gorontalo, Gorontalo

DOI:

https://doi.org/10.30865/mib.v7i2.5962

Keywords:

Machine Learning, Deep Learning, ANN, CNN, Identification, Selection Features, Leaf Image, Confusion Matrix

Abstract

Convolutional Neural Network (CNN) is a deep learning algorithm that is widely used to identify and classify a digital image object. In this study the Convolutional Neural Network (CNN) is used as an algorithm that functions to identify leaf types (certain plants) based on images obtained from a public dataset provider named Daun Jamu Indonesia. The existence of image characteristics causes the assistance process to require a more detailed feature selection process. Therefore the CNN method is used in order to solve the problem. The Convolutional Neural Network (CNN) method is capable of performing image recognition by minimizing feature extraction. CNN is also reliable in processing unstructured data because it uses a multi-layered structure of artificial reasoning networks. The image recognition process is carried out by looking for the shape of the model that matches the processed data in order to get the best results. In this study, the augmentation process was carried out on the training data and validation data so that overfitting does not occur in the Convolutional Neural Network (CNN). The results obtained in this study indicate that the Convolutional Neural Network (CNN) method can identify leaf types with a measured accuracy rate of 92% using the Confusion Matrix evaluation method. It is hoped that this research can be used as a reference for the use of the Convolutional Neural Network (CNN) method for image data, especially plant leaf types.

References

C. Aggarwal, “Convolutional Neural Networks: A Textbook,†2018, pp. 315–371.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

V. Sharma, S. Rai, and A. Dev, “A Comprehensive Study of Artificial Neural Networks,†2012.

Ayu Ratna Juwita, Tohirn Al Mudzakir, Adi Rizky Pratama, Purwani Husodo, and Rahmat Sulaiman, “Identifikasi Citra Batik Dengan Metode Convolutional Neural Network,†Buana Ilmu, vol. 6, no. 1, pp. 192–208, 2021, doi: 10.36805/bi.v6i1.1996.

E. N. Arrofiqoh and Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi ( The Implementation of Convolutional Neural Network Method for Agricultural Plant Classification in High Resolution Imagery ),†Geomatika, vol. 24, no. 2, pp. 61–68, 2018.

Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,†IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12, pp. 6999–7019, 2022, doi: 10.1109/TNNLS.2021.3084827.

“https://kujss.iraqjournals.com/pdf{_}166170{_}8dd024058ce4abb6c364bec514cecef8.html,†Kirkuk Univ. Journal-Scientific Stud., vol. 15, no. 2, pp. 1–16, Jun. 2020, doi: 10.32894/kujss.2019.15.2.1.

R. I. Essa, S. S. Prasetyowati, and Y. Sibaroni, “Performance of ANN and RNN in Predicting the Classification of Covid-19 Diseases based on Time Series Data,†vol. 10, no. 1, pp. 82–90, 2023, doi: 10.30865/jurikom.v10i1.5557.

A. E. Minarno, G. W. Wicaksono, Y. Azhar, and M. Y. Hasanuddin, “Indonesian Herb Leaf Dataset 3500,†Mendeley data, 2022. https://data.mendeley.com/datasets/s82j8dh4rr.

R. Pujiati and N. Rochmawati, “Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN),†J. Informatics Comput. Sci., vol. 3, no. 03, pp. 351–357, 2022, doi: 10.26740/jinacs.v3n03.p351-357.

F. Felix, J. Wijaya, S. P. Sutra, P. W. Kosasih, and P. Sirait, “Implementasi Convolutional Neural Network Untuk Identifikasi Jenis Tanaman Melalui Daun,†J. SIFO Mikroskil, vol. 21, no. 1, pp. 1–10, 2020, doi: 10.55601/jsm.v21i1.672.

A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,†Comput. Electron. Agric., vol. 175, no. January, p. 105456, 2020, doi: 10.1016/j.compag.2020.105456.

A. Ajit, K. Acharya, and A. Samanta, “A Review of Convolutional Neural Networks,†Int. Conf. Emerg. Trends Inf. Technol. Eng. ic-ETITE 2020, pp. 1–5, 2020, doi: 10.1109/ic-ETITE47903.2020.049.

N. Chaibi, B. Atmani, and M. Mokaddem, “A Convolutional Neural Network With Feature Selection-Based Network Intrusion Detection,†Int. J. Appl. Evol. Comput., vol. 13, no. 1, pp. 1–21, Jun. 2022, doi: 10.4018/IJAEC.302014.

B. D. Mardiana, W. B. Utomo, U. N. Oktaviana, G. W. Wicaksono, and A. E. Minarno, “Herbal Leaves Classification Based on Leaf Image Using {CNN} Architecture Model {VGG}16,†J. {RESTI} (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 1, pp. 20–26, Feb. 2023, doi: 10.29207/resti.v7i1.4550.

R. Rahmadewi, E. Purwanti, and V. Efelina, “Identifikasi Jenis Tumbuhan Menggunakan Citra Daun Berbasis Jaringan Saraf Tiruan (Artificial Neural Networks),†J. Media Elektro, vol. VII, no. 2, pp. 38–43, 2018, doi: 10.35508/jme.v0i0.427.

N. K. Manaswi, Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras. 2018.

A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,†Creat. Inf. Technol. J., vol. 8, no. 1, p. 22, 2021, doi: 10.24076/citec.2021v8i1.263.

S. A. Rosiva Srg, M. Zarlis, and W. Wanayumini, “Identifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan K-NN (K-Nearest Neighbor),†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 477–488, 2022, doi: 10.30812/matrik.v21i2.1572.

F. Hu, G. S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery,†Remote Sens., vol. 7, no. 11, pp. 14680–14707, 2015, doi: 10.3390/rs71114680.

Haryono, Khairul Anam, and Azmi Saleh, “Autentikasi Daun Herbal Menggunakan Convolutional Neural Network dan Raspberry Pi,†J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 3, pp. 278–286, 2020, doi: 10.22146/.v9i3.302.

Y. Li, J. Nie, and X. Chao, “Do we really need deep CNN for plant diseases identification?,†Comput. Electron. Agric., vol. 178, no. August, p. 105803, 2020, doi: 10.1016/j.compag.2020.105803.

Downloads

Published

2023-04-27

Issue

Section

Articles