Komparasi Hasil Optimasi Pada Prediksi Harga Saham PT. Telkom Indonesia Menggunakan Algoritma Long Short Term Memory
DOI:
https://doi.org/10.30865/mib.v7i2.5822Keywords:
RNN, LSTM, AI, Share, EpochAbstract
To invest or buy and sell on the stock exchange requires understanding in the field of data analysis. The movement of the curve in the stock market is very dynamic, so it requires data modeling to predict stock prices in order to get prices with a high degree of accuracy. One of the steps to achieve this can be using a prediction system based on machine learning. There are several algorithms that can be used to predict stock values, one of which is the Long-Short Term Memory (LSTM) algorithm. This study aims to compare several optimization models, namely the Adam, SGD and RMSprop optimization models to analyze the accuracy of the LSTM algorithm in predicting stock price data and analyzing the number of epochs in forming an optimal model. The results of our research show that the LSTM algorithm has a good level of accurate prediction as shown in the Mean Absolute Percentage Error (MAPE) value and the data model obtained on variations in epochs values. Adam's optimization model shows that the higher the epoch value, the lower the loss value. The lower the loss value, the higher the prediction accuracy of the resulting stock data. Adam's Optimization Model is also the model with the highest accuracy value of 98.45%.References
B. E. Indonesia, “Saham Indonesia.†https://www.idx.co.id/produk/saham/
I. Oktavia and K. Genjar, “FAKTOR-FAKTOR YANG MEMPENGARUHI HARGA SAHAM,†J. Ris. Akunt. Multiparadigma, vol. 6, no. 1, pp. 29–39, 2019.
S. Saleh and R. Tabe, “Analysis Of Stock Price At Pt. Telkom Indonesia Tbk Before And After Having Damage On Its Satelit,†Tasharruf J. Econ. Bus. Islam, vol. 3, no. 1, pp. 13–26, 2018, doi: 10.30984/tjebi.v3i1.653.
M. T. S. Putra and I. G. A. M. A. D. Putri, “Pengaruh Pengungkapan Corporate Social Responsibility terhadap Nilai Perusahaan dengan Good Corporate Governance sebagai Variabel Pemoderasi,†E-Jurnal Akunt., vol. 32, no. 5, p. 1317, 2022, doi: 10.24843/eja.2022.v32.i05.p15.
P. F and Fawcett, Data Science and it Relationship to Big Data and Data Driven Decision Making. 2013.
A. S. Talita and A. Wiguna, “Implementasi Algoritma Long Short-Term Memory (LSTM) Untuk Mendeteksi Ujaran Kebencian (Hate Speech) Pada Kasus Pilpres 2019,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 1, pp. 37–44, 2019, doi: 10.30812/matrik.v19i1.495.
T. Lattifia, P. Wira Buana, and N. K. D. Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,†JITTER J. Ilm. Teknol. dan Komput., vol. 3, no. 1, pp. 994–1000, 2022, [Online]. Available: https://ojs.unud.ac.id/index.php/jitter/article/view/85000/43781
J. Cao, J., Li, Z., & Li, Financial Time Series Forecasting Model Based in CEEMDAN and LSTM. Physic A: Statistical Mechanics and its Applications. 2019.
R. D. W. Santosa, M. A. Bijaksana, and A. Romadhony, “Implementasi Algoritma Long Short-Term Memory ( LSTM ) untuk Mendeteksi Penggunaan Kalimat Abusive Pada Teks Bahasa Indonesia,†e-Proceeding Eng., vol. 8, no. 1, pp. 691–702, 2021.
D. D. Pramesti, D. C. R. Novitasari, F. Setiawan, and H. Khaulasari, “Long-Short Term Memory (Lstm) for Predicting Velocity and Direction Sea Surface Current on Bali Strait,†BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 2, pp. 451–462, 2022, doi: 10.30598/barekengvol16iss2pp451-462.
A. A. Ningrum, I. Syarif, A. I. Gunawan, E. Satriyanto, and R. Muchtar, “Algoritma Deep Learning-LSTM untuk Memprediksi Umur Transformator,†J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, p. 539, 2021, doi: 10.25126/jtiik.2021834587.
D. Tarkus, S. R. U. A. Sompie, and A. Jacobus, “Implementasi Metode Recurrent Neural Network pada Pengklasifikasian Kualitas Telur Puyuh,†J. Tek. Inform., vol. 15, no. 2, pp. 137–144, 2020.
P. A. Qori, D. S. Oktafani, and I. Kharisudin, “Analisis Peramalan dengan Long Short Term Memory pada Data Kasus Covid-19 di Provinsi Jawa Tengah,†Prism. Pros. Semin. Nas. Mat., vol. 5, pp. 752–758, 2022.
M. W. P. Aldi, Jondri, and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin,†J. Inform., vol. 5, No, no. 2, p. 3548, 2018, [Online]. Available: http://openlibrarypublications.telkomniversity.ac.id
A. Khumaidi, R. Raafi’udin, and I. P. Solihin, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,†J. Telemat., vol. 15, no. 1, pp. 13–18, 2020, [Online]. Available: https://journal.ithb.ac.id/telematika/article/view/340
L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma,†J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.
M. K. Wisyaldin, G. M. Luciana, and H. Pariaman, “Pendekatan Long Short-Term Memory untuk Memprediksi Kondisi Motor 10 kV pada PLTU Batubara,†J. Kilat, vol. 9, no. 2, pp. 311–318, 2020.
Y. Finance, “Perusahaan Perseroan (Persero) PT Telekomunikasi Indonesia Tbk (TLKM.JK).†https://finance.yahoo.com/quote/TLKM.JK/history/ (accessed Jan. 11, 2023).
L. Gao, Z. Guo, H. Zhang, X. Xu, and H. T. Shen, “Video Captioning with Attention-Based LSTM and Semantic Consistency,†IEEE Trans. Multimed., vol. 19, no. 9, pp. 2045–2055, 2017, doi: 10.1109/TMM.2017.2729019.
A. Pulver and S. Lyu, “LSTM with working memory,†Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May, pp. 845–851, 2017, doi: 10.1109/IJCNN.2017.7965940.
D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,†3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.
L. Bottou, “Large-scale machine learning with stochastic gradient descent,†Proc. COMPSTAT 2010 - 19th Int. Conf. Comput. Stat. Keynote, Invit. Contrib. Pap., pp. 177–186, 2010, doi: 10.1007/978-3-7908-2604-3_16.
G. Hinton, “Lecture 6e - rmsprop: Divide the gradient by a running average of its recent magnitude,†COURSERA Neural networks Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012, [Online]. Available: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).