Personality Classification on Twitter Social Media using BERT
DOI:
https://doi.org/10.30865/mib.v7i1.5597Keywords:
Social Media, Personality, Twitter, Big Five Personality, BERTAbstract
In the modern era, social media is a platform often used to interact with people. Twitter is a popular social media, especially for human interaction. Using tweets on Twitter can describe how a person's personality and can also describe characteristics of a person. Humans themselves based on the Big Five Model Nursing Theory (Big Five Personality), have five general personalities, namely openness, conscientiousness, extraversion, agreeableness, and neuroticism. Personality itself influences a person's judgment of many things, knowing the personality of a person can make it easier to know the characteristics, habits, and ways of that person in their daily activities. In addition, understanding someone's personality can be a reference in seeing how someone can interact with others. It can also be used when looking for a job according to their personality. Thus, this research builds a system to classify personality using the BERT model with the dataset used in the form of tweets from Twitter users by making several changes such as parameters and using tests with several ratios in determining test data and also training data. The results acquired in this study are 50%.References
L. Jemadu and D. Prastya, “Jumlah Pengguna Media Sosial Indonesia Capai 191,4 Juta per 2022,†2022. https://www.suara.com/tekno/2022/02/23/191809/jumlah-pengguna-media-sosial-indonesia-capai-1914-juta-per-2022 (accessed Jan. 07, 2023).
C. M. Annur, “Pengguna Twitter Indonesia Masuk Daftar Terbanyak di Dunia, Urutan Berapa?,†2022. https://databoks.katadata.co.id/datapublish/2022/03/23/pengguna-twitter-indonesia-masuk-daftar-terbanyak-di-dunia-urutan-berapa (accessed Jan. 07, 2023).
G. M. Framanta, “Pengaruh Lingkungan Keluarga Terhadap Kepribadian Anak,†J. Pendidik. dan Konseling, vol. 2, no. 1, pp. 126–129, 2020, doi: 10.31004/jpdk.v1i2.654.
M. P. R. Putra and K. R. N. Wardani, “Penerapan Text Mining Dalam Menganalisis Kepribadian Pengguna Media Sosial,†JUTIM (Jurnal Tek. Inform. Musirawas), vol. 5, no. 1, pp. 63–71, 2020, doi: 10.32767/jutim.v5i1.791.
S. S. Keh and I.-T. Cheng, “Myers-Briggs Personality Classification and Personality-Specific Language Generation Using Pre-trained Language Models,†2019, [Online]. Available: http://arxiv.org/abs/1907.06333
A. Kazameini, S. Fatehi, Y. Mehta, S. Eetemadi, and E. Cambria, “Personality Trait Detection Using Bagged SVM over BERT Word Embedding Ensembles,†pp. 1–4, 2020, [Online]. Available: http://arxiv.org/abs/2010.01309
A. Souri, S. Hosseinpour, and A. M. Rahmani, “Personality classification based on profiles of social networks’ users and the five-factor model of personality,†Human-centric Comput. Inf. Sci., vol. 8, no. 1, 2018, doi: 10.1186/s13673-018-0147-4.
G. D. Salsabila and E. B. Setiawan, “Semantic Approach for Big Five Personality Prediction on Twitter,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 680–687, 2021, doi: 10.29207/resti.v5i4.3197.
K. El-Demerdash, R. A. El-Khoribi, M. A. Ismail Shoman, and S. Abdou, “Deep learning based fusion strategies for personality prediction,†Egypt. Informatics J., vol. 23, no. 1, pp. 47–53, Mar. 2022, doi: 10.1016/J.EIJ.2021.05.004.
R. Devika, S. Vairavasundaram, C. S. J. Mahenthar, V. Varadarajan, and K. Kotecha, “A Deep Learning Model Based on BERT and Sentence Transformer for Semantic Keyphrase Extraction on Big Social Data,†IEEE Access, vol. 9, pp. 165252–165261, 2021, doi: 10.1109/ACCESS.2021.3133651.
A. T. B. W and D. H. Fudholi, “KLASIFIKASI EMOSI PADA TEKS DENGAN MENGGUNAKAN METODE DEEP LEARNING,†J. Ilm. Indones., vol. 6, no. 1, 2021.
R. M. R. W. P. K. Atmaja and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),†Jeisbi, vol. 02, no. 03, pp. 55–62, 2021.
J. H. Tandijaya, Liliana, and I. Sugiarto, “Klasifikasi dalam Pembuatan Portal Berita Online dengan Menggunakan Metode BERT,†J. Infra, vol. 9, no. 2, pp. 320–325, 2021.
C. A. Putri, “Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformers,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 2, pp. 181–193, 2020, doi: 10.35957/jatisi.v6i2.206.
J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,†NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.
M. Fansyuri, “Analisa algoritma klasifikasi k-nearest neighbor dalam menentukan nilai akurasi terhadap kepuasan pelanggan (study kasus pt. Trigatra komunikatama),†Humanika J. Ilmu Sos. Pendidikan, dan Hum., vol. 3, no. 1, pp. 29–33, 2020.
I. Düntsch and G. Gediga, “Confusion Matrices and Rough Set Data Analysis,†J. Phys. Conf. Ser., vol. 1229, no. 1, 2019, doi: 10.1088/1742-6596/1229/1/012055.
A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,†Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,†J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.
D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,†BMC Genomics, vol. 21, no. 1, pp. 1–13, 2020, doi: 10.1186/s12864-019-6413-7.
A. Putri, B. S. Negara, and S. Sanjaya, “Penerapan Deep Learning Menggunakan VGG-16 untuk Klasifikasi Citra Glioma,†J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 379, 2022, doi: 10.30865/json.v3i4.4122.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).