Analisis Sentimen Kendaraan Listrik Pada Media Sosial Twitter Menggunakan Algoritma Logistic Regression dan Principal Component Analysis
DOI:
https://doi.org/10.30865/mib.v7i1.5575Keywords:
Sentiment Analysis, Electric Vehicle, Twitter, Logistic Regression, Principal Component AnalysisAbstract
Twitter sentiment analysis is a method for identifying a person's opinions, reactions, judgments, evaluations, and emotions towards certain topics on Twitter social media. Opinions or can be called opinions can be classified as positive or negative. This research was conducted to find out public opinion about electric vehicles on Twitter social media, which is more positive or negative. The data obtained was 1874 tweets with data divided into training data and testing data at a ratio of 80:20. Data is classified using the Logistic Regression (LR) method, and Principal Component Analysis (PCA) as an optimization to improve accuracy. In this study it was found that around 86.9% of the opinions were positive, and 13.1% of the opinions were negative on the topic of electric vehicles. The results of research conducted using the Logistic Regression algorithm obtained the best accuracy of 87.9%, and after being optimized using Principal Component Analysis the best accuracy obtained increased to 90%.
References
A. Agustian, T. Tukiro, dan F. Nurapriani, “Analisis Sentimen, Text Mining Penerapan Analisis Sentimen Dan Naive Bayes Terhadap Opini Penggunaan Kendaraan Listrik Di Twitterâ€, TIKA, vol. 7, no. 3, hlm. 243-249, 2022, doi: https://doi.org/10.51179/tika.v7i3.1550
V. Tulus Pangapoi Sidabutar, “Kajian pengembangan kendaraan listrik di Indonesia: prospek dan hambatannyaâ€, jpe, vol. 15, no. 1, pp. 21-38, May 2020, doi: https://doi.org/10.22437/paradigma.v15i1.9217
Biro Komunikasi dan Informasi Publik, (2022), “Menhub Dorong Instansi Pusat dan Daerah Jadi Role Model Penggunaan Kendaraan Listrikâ€, [Online]. Tersedia: https://dephub.go.id/post/read/menhub-dorong-instansi-pusat-dan-daerah-jadi-role-model-penggunaan-kendaraan-listrik [Diakses 13 Januari 2023]
A. Riyadi et al., "Pengukuran Sentimen Sosial Terhadap Teknologi Kendaraan Listrik: Bukti Empiris di Indonesia", EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, Vol 11, No 2, 2021, doi: http://dx.doi.org/10.36448/expert.v11i2.2171
APJII, (2022), “Survei Penetrasi dan Perilaku Penggunaan Internet “, [Online]. Tersedia: https://apjii.or.id/survei/surveiprofilinternetindonesia2022-21072047 [Diakses 21 Desember 2022]
F. Handayani, dan M. Mustikasari, “SENTIMENT ANALYSIS OF ELECTRIC CARS USING RECURRENT NEURAL NETWORK METHOD IN INDONESIAN TWEETSâ€, Jurnal Ilmiah KURSOR, vol. 10, no. 04, hlm. 153-158, 2020, doi: https://doi.org/10.21107/kursor.v10i4.233
A. Santoso, A. Nugroho, and A. S. Sunge, “Analisis Sentimen Tentang Mobil Listrik Dengan Metode Support Vector Machine Dan Feature Selection Particle Swarm Optimizationâ€, jpcs, vol. 2, no. 1, pp. 24-31, Jul. 2022, doi: https://doi.org/10.37366/jpcs.v2i1.1084
F. J. Costello and K. C. Lee, “Exploring the Sentiment Analysis of Electric Vehicles Social Media Data by Using Feature Selection Methods,†Journal of Digital Convergence, vol. 18, no. 2, pp. 249–259, Feb. 2020, doi: https://doi.org/10.14400/JDC.2020.18.2.249
A. K. Jean et al., "Application based on Hybrid CNN-SVM and PCASVM Approaches for Classification of Cocoa Beans", International Journal of Advanced Computer Science and Applications (IJACSA), vol. 13, no. 9, 2022, doi: 10.14569/IJACSA.2022.0130927
B. Nugraha, “Metode Klasifikasi Analisis Sentimen pada Media Sosialâ€, Syntax J. Inf., vol. 9, no. 2, pp. 119–123, Dec. 2020, doi: https://doi.org/10.35706/syji.v9i2.3593
W. Yulita et al., "ANALISIS SENTIMEN TERHADAP OPINI MASYARAKAT TENTANG VAKSIN COVID-19 MENGGUNAKAN ALGORITMA NAÃVE BAYES CLASSIFIER", JDMSI, vol. 2, no. 2, hlm. 1-9, 2021, doi: https://doi.org/10.33365/jdmsi.v2i2.1344
D. K. Wardy et al., "Clustering Artikel pada Portal Berita Online Menggunakan Metode K-Means", JITTER: Jurnal Ilmiah Teknologi dan Komputer, vol. 3, no. 1, pp. 985-993, mar. 2022, [Online]. Tersedia: https://ojs.unud.ac.id/index.php/jitter/article/view/84732 [Diakses 19 Januari 2023]
B. Laurensz and Eko Sediyono, “Analysis of Public Sentiment on Vaccination in Efforts to Overcome the Covid-19 Pandemicâ€, JNTETI, vol. 10, no. 2, pp. 118-123, May 2021, doi: https://doi.org/10.22146/jnteti.v10i2.1421
A. K. Sharma et al., "Sentimental Short Sentences Classification by Using CNN Deep Learning Model with Fine Tuned Word2Vec", Procedia Computer Science, vol. 167, pp. 1139-1147, 2020, doi: 10.1016/j.procs.2020.03.416
M. A. Fauzi, "Word2Vec model for sentiment analysis of product reviews in Indonesian language", IJECE, vol. 9, no. 1, pp. 525-530, Fe. 2019, doi: http://doi.org/10.11591/ijece.v9i1.pp525-530
A. Fesseha, S. Xiong, E. D. Emiru, M. Diallo, and A. Dahou, “Text Classification Based on Convolutional Neural Networks and Word Embedding for Low-Resource Languages: Tigrinya,†Information, vol. 12, no. 2, p. 52, Jan. 2021, doi: 10.3390/info12020052
A. P. Giovani et al., "ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI", Jurnal TEKNOINFO, vol. 14, no. 2, pp. 116-124, 2020, doi: https://doi.org/10.33365/jti.v14i2.679
A. S. Ritonga, I. Muhandhis, "TEKNIK DATA MINING UNTUK MENGKLASIFIKASIKAN DATA ULASAN DESTINASI WISATA MENGGUNAKAN REDUKSI DATA PRINCIPAL COMPONENT ANALYSIS (PCA)", Jurnal Ilmiah Edutic, vol. 7, no. 2, pp. 124-133, Mei. 2022, doi: https://doi.org/10.21107/edutic.v7i2.9247
D. K. Choubey et al., "Performance evaluation of classifcation methods with PCA and PSO for diabetes", Netw Model Anal Health Inform Bioinforma, vol. 9, no. 5, 2020, doi: https://doi.org/10.1007/s13721-019-0210-8
M. E. Shipe et al., "Developing prediction models for clinical use using logistic regression: an overview", J Thorac Dis, Mar. 2019, doi: 10.21037/jtd.2019.01.25
H. M. Ahmed et al., "Sentiment Analysis of Online Food Reviews using Big Data Analytics", Elementary Education Online, vol. 20, no. 2, pp. 827-836, Apr.2021, doi: 10.17051/ilkonline.2021.02.93
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).