Analisis Sentimen Kendaraan Listrik Pada Media Sosial Twitter Menggunakan Algoritma Logistic Regression dan Principal Component Analysis

Authors

  • Youga Pratama Telkom University, Bandung
  • Danang Triantoro Murdiansyah Telkom University, Bandung
  • Kemas Muslim Lhaksmana Telkom University, Bandung

DOI:

https://doi.org/10.30865/mib.v7i1.5575

Keywords:

Sentiment Analysis, Electric Vehicle, Twitter, Logistic Regression, Principal Component Analysis

Abstract

Twitter sentiment analysis is a method for identifying a person's opinions, reactions, judgments, evaluations, and emotions towards certain topics on Twitter social media. Opinions or can be called opinions can be classified as positive or negative. This research was conducted to find out public opinion about electric vehicles on Twitter social media, which is more positive or negative. The data obtained was 1874 tweets with data divided into training data and testing data at a ratio of 80:20. Data is classified using the Logistic Regression (LR) method, and Principal Component Analysis (PCA) as an optimization to improve accuracy. In this study it was found that around 86.9% of the opinions were positive, and 13.1% of the opinions were negative on the topic of electric vehicles. The results of research conducted using the Logistic Regression algorithm obtained the best accuracy of 87.9%, and after being optimized using Principal Component Analysis the best accuracy obtained increased to 90%.

References

A. Agustian, T. Tukiro, dan F. Nurapriani, “Analisis Sentimen, Text Mining Penerapan Analisis Sentimen Dan Naive Bayes Terhadap Opini Penggunaan Kendaraan Listrik Di Twitterâ€, TIKA, vol. 7, no. 3, hlm. 243-249, 2022, doi: https://doi.org/10.51179/tika.v7i3.1550

V. Tulus Pangapoi Sidabutar, “Kajian pengembangan kendaraan listrik di Indonesia: prospek dan hambatannyaâ€, jpe, vol. 15, no. 1, pp. 21-38, May 2020, doi: https://doi.org/10.22437/paradigma.v15i1.9217

Biro Komunikasi dan Informasi Publik, (2022), “Menhub Dorong Instansi Pusat dan Daerah Jadi Role Model Penggunaan Kendaraan Listrikâ€, [Online]. Tersedia: https://dephub.go.id/post/read/menhub-dorong-instansi-pusat-dan-daerah-jadi-role-model-penggunaan-kendaraan-listrik [Diakses 13 Januari 2023]

A. Riyadi et al., "Pengukuran Sentimen Sosial Terhadap Teknologi Kendaraan Listrik: Bukti Empiris di Indonesia", EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, Vol 11, No 2, 2021, doi: http://dx.doi.org/10.36448/expert.v11i2.2171

APJII, (2022), “Survei Penetrasi dan Perilaku Penggunaan Internet “, [Online]. Tersedia: https://apjii.or.id/survei/surveiprofilinternetindonesia2022-21072047 [Diakses 21 Desember 2022]

F. Handayani, dan M. Mustikasari, “SENTIMENT ANALYSIS OF ELECTRIC CARS USING RECURRENT NEURAL NETWORK METHOD IN INDONESIAN TWEETSâ€, Jurnal Ilmiah KURSOR, vol. 10, no. 04, hlm. 153-158, 2020, doi: https://doi.org/10.21107/kursor.v10i4.233

A. Santoso, A. Nugroho, and A. S. Sunge, “Analisis Sentimen Tentang Mobil Listrik Dengan Metode Support Vector Machine Dan Feature Selection Particle Swarm Optimizationâ€, jpcs, vol. 2, no. 1, pp. 24-31, Jul. 2022, doi: https://doi.org/10.37366/jpcs.v2i1.1084

F. J. Costello and K. C. Lee, “Exploring the Sentiment Analysis of Electric Vehicles Social Media Data by Using Feature Selection Methods,†Journal of Digital Convergence, vol. 18, no. 2, pp. 249–259, Feb. 2020, doi: https://doi.org/10.14400/JDC.2020.18.2.249

A. K. Jean et al., "Application based on Hybrid CNN-SVM and PCASVM Approaches for Classification of Cocoa Beans", International Journal of Advanced Computer Science and Applications (IJACSA), vol. 13, no. 9, 2022, doi: 10.14569/IJACSA.2022.0130927

B. Nugraha, “Metode Klasifikasi Analisis Sentimen pada Media Sosialâ€, Syntax J. Inf., vol. 9, no. 2, pp. 119–123, Dec. 2020, doi: https://doi.org/10.35706/syji.v9i2.3593

W. Yulita et al., "ANALISIS SENTIMEN TERHADAP OPINI MASYARAKAT TENTANG VAKSIN COVID-19 MENGGUNAKAN ALGORITMA NAÃVE BAYES CLASSIFIER", JDMSI, vol. 2, no. 2, hlm. 1-9, 2021, doi: https://doi.org/10.33365/jdmsi.v2i2.1344

D. K. Wardy et al., "Clustering Artikel pada Portal Berita Online Menggunakan Metode K-Means", JITTER: Jurnal Ilmiah Teknologi dan Komputer, vol. 3, no. 1, pp. 985-993, mar. 2022, [Online]. Tersedia: https://ojs.unud.ac.id/index.php/jitter/article/view/84732 [Diakses 19 Januari 2023]

B. Laurensz and Eko Sediyono, “Analysis of Public Sentiment on Vaccination in Efforts to Overcome the Covid-19 Pandemicâ€, JNTETI, vol. 10, no. 2, pp. 118-123, May 2021, doi: https://doi.org/10.22146/jnteti.v10i2.1421

A. K. Sharma et al., "Sentimental Short Sentences Classification by Using CNN Deep Learning Model with Fine Tuned Word2Vec", Procedia Computer Science, vol. 167, pp. 1139-1147, 2020, doi: 10.1016/j.procs.2020.03.416

M. A. Fauzi, "Word2Vec model for sentiment analysis of product reviews in Indonesian language", IJECE, vol. 9, no. 1, pp. 525-530, Fe. 2019, doi: http://doi.org/10.11591/ijece.v9i1.pp525-530

A. Fesseha, S. Xiong, E. D. Emiru, M. Diallo, and A. Dahou, “Text Classification Based on Convolutional Neural Networks and Word Embedding for Low-Resource Languages: Tigrinya,†Information, vol. 12, no. 2, p. 52, Jan. 2021, doi: 10.3390/info12020052

A. P. Giovani et al., "ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI", Jurnal TEKNOINFO, vol. 14, no. 2, pp. 116-124, 2020, doi: https://doi.org/10.33365/jti.v14i2.679

A. S. Ritonga, I. Muhandhis, "TEKNIK DATA MINING UNTUK MENGKLASIFIKASIKAN DATA ULASAN DESTINASI WISATA MENGGUNAKAN REDUKSI DATA PRINCIPAL COMPONENT ANALYSIS (PCA)", Jurnal Ilmiah Edutic, vol. 7, no. 2, pp. 124-133, Mei. 2022, doi: https://doi.org/10.21107/edutic.v7i2.9247

D. K. Choubey et al., "Performance evaluation of classifcation methods with PCA and PSO for diabetes", Netw Model Anal Health Inform Bioinforma, vol. 9, no. 5, 2020, doi: https://doi.org/10.1007/s13721-019-0210-8

M. E. Shipe et al., "Developing prediction models for clinical use using logistic regression: an overview", J Thorac Dis, Mar. 2019, doi: 10.21037/jtd.2019.01.25

H. M. Ahmed et al., "Sentiment Analysis of Online Food Reviews using Big Data Analytics", Elementary Education Online, vol. 20, no. 2, pp. 827-836, Apr.2021, doi: 10.17051/ilkonline.2021.02.93

Downloads

Published

2023-02-02