Disaster Management Sentiment Analysis Using the BiLSTM Method

Authors

DOI:

https://doi.org/10.30865/mib.v7i1.5573

Keywords:

Sentiment Analysis, Twitter, BiLSTM, Word2vec, Flood Disaster, Earthquake

Abstract

Indonesia is a country prone to natural disasters. Natural disasters occur due to the process of adjustment to changes in natural conditions due to human behavior or biological processes. Community responses through tweets on Twitter are crucial for decision-making and action in disaster management and recovery processes. From the many public reactions via Twitter, sentiment analysis can be carried out. Classification using the BiLSTM method can be carried out to determine the categories of positive and negative responses after previously being compared using the SVM, which resulted in an accuracy of 82.73% and a BERT of 81.78%. After the classification process, the testing process is carried out with Word2Vec. From a total of 2,686 Twitter data, it was concluded that there were around 2,081 positive sentiments and 605 negative sentiments related to disaster management in Indonesia. At the same time, the test results obtained accuracy reached 84%, precision 88%, recall 92%, and f1-score reached 90%.

Author Biography

Rachdian Habi Yahya, Telkom University, Bandung

School of Computing

References

Sulthan, M. B., Wahyudi, I., & Suhartini, L. (2021). Analisis Sentimen Pada Bencana Alam Menggunakan Deep Neural Network dan Information Gain. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (JATIM). https://doi.org/10.31102/jatim.v2i2.1273

D. Superadmin, Badan Nasional Penanggulangan Bencana, [online] Available: https://bnpb.go.id/infografis/kejadian-bencana-tahun-2021.

Digital 2022: Indonesia — DataReportal – Global Digital Insights, “DataReportal – Global Digital Insights,†DataReportal – Global Digital Insights, Feb. 15, 2022. https://datareportal.com/reports/digital-2022-indonesia (accessed May 15, 2022).

Pratiwi, T. S., & Chotimah, H. C. (2021). AKTIVITAS DIPLOMASI DIGITAL DALAM MANAJEMEN BENCANA: STUDI KASUS DI DAERAH ISTIMEWA YOGYAKARTA, INDONESIA DAN FUKUSHIMA, JEPANG. Jurnal Studi Diplomasi Dan Keamanan. https://doi.org/10.31315/jsdk.v13i1.4367

Statista. “Pengguna Twitter Indonesia Masuk Daftar Terbanyak di Dunia, Urutan Berapa?†katadata, 22 Maret 2022, https://databoks.katadata.co.id/datapublish/2022/03/23/pengguna-twitter-indonesia-masuk-daftar-terbanyak-di-dunia-urutan-berapa. Accessed 20 Mei 2022.

Auliya Rahman Isnain, Agus Sihabuddin, and Yohanes Suyant, “Bidirectional Long Short Term Memory Method and Word2vec Extraction Approach for Hate Speech Detection,†IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 14, no. No.2, pp. 1–10, Apr. 2020.

Alif Sabrani, “KLASIFIKASI ARTIKEL ONLINE TENTANG GEMPA DI INDONESIA MENGGUNAKAN MULTINOMIAL NAÃVE BAYES,†Publikasi Tugas Akhir S-1 PSTI FT-UNRAM, 2020. https://begawe.unram.ac.id/index.php/ta/article/view/20 (accessed May 14, 2022)

Pratiwi, R. W., Sari, Y., & Suyanto, Y. (2020). Attention-Based BiLSTM for Negation Handling in Sentimen Analysis. IJCCS (Indonesian Journal of Computing and Cybernetics Systems). https://doi.org/10.22146/ijccs.60733

Dong, Y., Fu, Y., Wang, L., Chen, Y., Dong, Y., & Li, J. (2020). A sentiment analysis method of capsule network based on BiLSTM. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2973711

Sulthan, M. B., Wahyudi, I., & Suhartini, L. (2021). Analisis Sentimen Pada Bencana Alam Menggunakan Deep Neural Network dan Information Gain. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (JATIM). https://doi.org/10.31102/jatim.v2i2.1273

Fauzi, R. (2021, February 21). Cara Kerja Long Short-Term Memory (LSTM) | Catatan Penelitian #11. Rifqifai. Retrieved January 21, 2023, from https://rifqifai.com/cara-kerja-long-short-term-memory-lstm/

Dr. G. S. N. Murthy, Shanmukha Rao Allu, Bhargavi Andhavarapu, & Mounika Bagadi, Mounika Belusonti. (2020). Text based Sentiment Analysis using LSTM. International Journal of Engineering Research And. https://doi.org/10.17577/ijertv9is050290

Que, V. K. S., Iriani, A., & Purnomo, H. D. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi. https://doi.org/10.22146/jnteti.v9i2.102

T. S. Sabrila, V. R. Sari, and A. E. Minarno, “Analisis Sentimen Pada Tweet Tentang Penanganan Covid-19 Menggunakan Word Embedding Pada Algoritma Support Vector Machine Dan K-Nearest Neighbor,†Fountain of Informatics Journal, vol. 6, no. 2, p. 69, Jul. 2021, doi: 10.21111/fij.v6i2.5536.

Soni, Manik. “Understanding architecture of LSTM cell from scratch with code.†Medium.com, 22 Juni 2018, https://medium.com/hackernoon/understanding-architecture-of-lstm-cell-fr om-scratch-with-code-8da40f0b71f4. Accessed 15 Mei 2022.

Elfaik, H., & Nfaoui, E. H. (2021). Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text. Journal of Intelligent Systems. https://doi.org/10.1515/jisys-2020-0021

Rhanoui, M., Mikram, M., Yousfi, S., & Barzali, S. (2019). A CNN-BiLSTM Model for Document-Level Sentiment Analysis. Machine Learning and Knowledge Extraction. https://doi.org/10.3390/make1030048

Imrana, Y., Xiang, Y., Ali, L., & Abdul-Rauf, Z. (2021). A bidirectional LSTM deep learning approach for intrusion detection. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2021.115524

Elfaik, H., & Nfaoui, E. H. (2021). Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text. Journal of Intelligent Systems. https://doi.org/10.1515/jisys-2020-002

Han, X., & Wang, J. (2019). Using social media to mine and analyze public sentiment during a disaster: A case study of the 2018 Shouguang city flood in China. In ISPRS International Journal of Geo-Information. https://doi.org/10.3390/ijgi8040185

Behl, S., Rao, A., Aggarwal, S., Chadha, S., & Pannu, H. S. (2021). Twitter for disaster relief through sentiment analysis for COVID-19 and natural hazard crises. International Journal of Disaster Risk Reduction. https://doi.org/10.1016/j.ijdrr.2021.102101

Pirnau, M. (2019). Sentiment analysis for the tweets that contain the word “earthquake.†Proceedings of the 10th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2018. https://doi.org/10.1109/ECAI.2018.8678958

Irawanto, B. (2018). Narratives of natural disaster survivors in Indonesian media. Pacific Journalism Review. https://doi.org/10.24135/pjr.v24i1.410

Zaki, U. H. H., Ibrahim, R., Halim, S. A., Khaidzir, K. A. M., & Yokoi, T. (2018). Sentiflood: Process model for flood disaster sentiment analysis. 2017 IEEE Conference on Big Data and Analytics, ICBDA 2017. https://doi.org/10.1109/ICBDAA.2017.8284104

Choirul Rahmadan, M., Nizar Hidayanto, A., Swadani Ekasari, D., Purwandari, B., & Theresiawati. (2020). Sentiment Analysis and Topic Modelling Using the LDA Method related to the Flood Disaster in Jakarta on Twitter. Proceedings - 2nd International Conference on Informatics, Multimedia, Cyber, and Information System, ICIMCIS 2020. https://doi.org/10.1109/ICIMCIS51567.2020.9354320

Downloads

Published

2023-01-31