Penggunaan Algoritma K-Means Pada Aplikasi Pemetaaan Klaster Daerah Pariwisata

Authors

  • Lion Ferdinand Marini Universitas Papua, Manokwari
  • Christian Dwi Suhendra Universitas Papua, Manokwari

DOI:

https://doi.org/10.30865/mib.v7i2.5558

Keywords:

Teluk Wondama, Tourism, K-Means, Map, Shiny Web

Abstract

The Teluk Wondama Regency has various potentials in the field of religious and natural tourism. There are 13 districts in Teluk Wondama, where some districts are included in the Teluk Cendrawasih National Park area. This makes Teluk Wondama regency visited by many tourists every year. However, this potential is not well maximized by the local government. This is due to the long distance between each district, with a travel time of about 1-2 hours. This research will group districts that have potential to be maximized by the local government using the K-Means clustering algorithm. This algorithm will use the Elbow and Silhouette methods in the process of determining the most ideal cluster. The cluster results obtained will be presented in the form of web-based tourism area maps. The results obtained from the two cluster determination methods are 2 clusters. Of the 13 districts, after the normalization process is carried out by removing districts that do not have tourist data, only 7 districts remain. Based on the cluster analysis, there are 3 districts in cluster 1 and 5 districts in cluster 2. The cluster of tourism areas is presented in the form of a map created using the Shiny Web with R programming language.

Author Biographies

Lion Ferdinand Marini, Universitas Papua, Manokwari

Informatics Engineering, Faculty of Technology. Rank B

Christian Dwi Suhendra, Universitas Papua, Manokwari

Informatics Engineering, Faculty of Technology. Rank B

References

A. A. Sokoy et al., Jelajah Nasional Teluk Cendrawasih, 1st ed. Manokwari: Balai Besar Taman Nasional Teluk Cendrawasih, 2017.

K. L. H. dan Kehutanan, Keputusan Direktur Jendral Konservasi Sumber Daya Alam dan Ekosistem. Indonesia, 2017, p. 2.

P. P. Barat, Peraturan Daerah Khusus No. 10 Tahun 2019. Indonesia, 2019, p. 38.

I. H. Witten, E. Frank, and M. A. Hall, Data Mining, 3rd ed. Burlington: Elsevier, 2011.

R. W. Sari and D. Hartama, “Data Mining : Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi,†pp. 322–326, 2018.

M. Albert, A. Lobo, S. Y. J. Prasetyo, and K. D. Hartomo, “Pemetaan Karakteristik Sekolah Sasaran Promosi pada UNKRISWINA SUMBA menggunakan K-Means,†vol. 6, pp. 1842–1850, 2022, doi: 10.30865/mib.v6i4.4464.

D. M. K-means, E. Satria, H. S. Tambunan, I. S. Saragih, and I. S. Damanik, “Penerapan Cluster ing dalam Mengelompokkan Jumlah Kunjungan Wisatawan Mancanegara,†no. September, pp. 462–471, 2019.

S. Paembonan and H. Abduh, “Penerapan Metode Silhouette Coeficient Untuk Evaluasi Clutering Obat,†vol. 6, no. 2, pp. 48–54, 2021.

T. Hardiani, “Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means,†J. Nas. Pendidik. Tek. Inform., vol. 11, no. 2, pp. 156–165, 2022, doi: 10.23887/janapati.v11i2.45376.

D. A. Kuntjoro, B. D. Setiawan, and R. S. Perdana, “Algoritme Genetika Untuk Optimasi K-Means Clustering Dalam Pengelompokan Data Tsunami,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3865–3872, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

A. Primandana, S. Adinugroho, and C. Dewi, “Optimasi Penentuan Centroid pada Algoritme K-Means Menggunakan Algoritme Pillar (Studi Kasus: Penyandang Masalah Kesejahteraan Sosial di Provinsi …,†… Teknol. Inf. dan Ilmu …, vol. 3, no. 11, pp. 10678–10683, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/6748/3264

K. A. Saputra and I. N. W. Wijaya, “Penerapan Algoritma Pillar Untuk Inisialisasi Titik Pusat K- Application of Pillar Algorithm for Initialization of K-Means Dynamic Cluster Centroid,†vol. 7, no. 6, pp. 1213–1220, 2020, doi: 10.25126/jtiik.202072538.

R. T. Aldisa and G. Ginting, “Sistem Pendukung Keputusan Penentuan Pelaku Pariwisata Terbaik dimasa Pandemi Covid-19 Menerapkan Metode OCRA dengan Pembobotan ROC,†vol. 6, no. 5, pp. 1056–1063, 2022, doi: 10.30865/mib.v6i2.4000.

K. Selatan, B. Bali, and K. P. Tuban, “Jurusan Teknik Elektro , Politeknik Negeri Bali , Kampus Bukit Jimbaran ,†vol. 5, no. 5, pp. 621–628, 2018, doi: 10.25126/jtiik2018551120.

T. Online, K. S. Budiyanto, I. P. Windasari, Y. Eko, and D. Ulfiana, “Jurnal Politeknik Caltex Riau Sistem Informasi Geografis berbasis Web untuk Penentuan Prioritas Pembangunan Embung,†vol. 6, no. 2, pp. 169–181, 2020.

J. Han, K. Micheline, and P. Jian, Data Mining. Concept and Techniques, 3rd ed. Waltham: Elsevier, 2012.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,†J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.

M. E. Centre, “Selection of K in K -means clustering,†vol. 219, no. September 2004, pp. 103–119, 2005, doi: 10.1243/095440605X8298.

G. Wang et al., “Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Clusterâ€, doi: 10.1088/1757-899X/336/1/012017.

R. Hidayati et al., “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering,†vol. 20, no. 2, pp. 186–197, 2021, doi: https://doi.org/10.33633/tc.v20i2.

R. Ananda and A. Z. Yamani, “Penentuan Centroid Awal K-means pada proses Clustering Data Evaluasi Pengajaran Dosen,†J. RESTI, vol. 1, no. 3, pp. 544–550, 2017.

E. U. Oti, M. O. Olusola, F. C. Eze, and S. U. Enogwe, “Comprehensive Review of K-Means Clustering Algorithms Comprehensive Review of K-Means Clustering Algorithms,†no. October, 2021, doi: 10.31695/IJASRE.2021.34050.

Downloads

Published

2023-04-27

Issue

Section

Articles