Penggunaan Algoritma K-Means Pada Aplikasi Pemetaaan Klaster Daerah Pariwisata
DOI:
https://doi.org/10.30865/mib.v7i2.5558Keywords:
Teluk Wondama, Tourism, K-Means, Map, Shiny WebAbstract
The Teluk Wondama Regency has various potentials in the field of religious and natural tourism. There are 13 districts in Teluk Wondama, where some districts are included in the Teluk Cendrawasih National Park area. This makes Teluk Wondama regency visited by many tourists every year. However, this potential is not well maximized by the local government. This is due to the long distance between each district, with a travel time of about 1-2 hours. This research will group districts that have potential to be maximized by the local government using the K-Means clustering algorithm. This algorithm will use the Elbow and Silhouette methods in the process of determining the most ideal cluster. The cluster results obtained will be presented in the form of web-based tourism area maps. The results obtained from the two cluster determination methods are 2 clusters. Of the 13 districts, after the normalization process is carried out by removing districts that do not have tourist data, only 7 districts remain. Based on the cluster analysis, there are 3 districts in cluster 1 and 5 districts in cluster 2. The cluster of tourism areas is presented in the form of a map created using the Shiny Web with R programming language.
References
A. A. Sokoy et al., Jelajah Nasional Teluk Cendrawasih, 1st ed. Manokwari: Balai Besar Taman Nasional Teluk Cendrawasih, 2017.
K. L. H. dan Kehutanan, Keputusan Direktur Jendral Konservasi Sumber Daya Alam dan Ekosistem. Indonesia, 2017, p. 2.
P. P. Barat, Peraturan Daerah Khusus No. 10 Tahun 2019. Indonesia, 2019, p. 38.
I. H. Witten, E. Frank, and M. A. Hall, Data Mining, 3rd ed. Burlington: Elsevier, 2011.
R. W. Sari and D. Hartama, “Data Mining : Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi,†pp. 322–326, 2018.
M. Albert, A. Lobo, S. Y. J. Prasetyo, and K. D. Hartomo, “Pemetaan Karakteristik Sekolah Sasaran Promosi pada UNKRISWINA SUMBA menggunakan K-Means,†vol. 6, pp. 1842–1850, 2022, doi: 10.30865/mib.v6i4.4464.
D. M. K-means, E. Satria, H. S. Tambunan, I. S. Saragih, and I. S. Damanik, “Penerapan Cluster ing dalam Mengelompokkan Jumlah Kunjungan Wisatawan Mancanegara,†no. September, pp. 462–471, 2019.
S. Paembonan and H. Abduh, “Penerapan Metode Silhouette Coeficient Untuk Evaluasi Clutering Obat,†vol. 6, no. 2, pp. 48–54, 2021.
T. Hardiani, “Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means,†J. Nas. Pendidik. Tek. Inform., vol. 11, no. 2, pp. 156–165, 2022, doi: 10.23887/janapati.v11i2.45376.
D. A. Kuntjoro, B. D. Setiawan, and R. S. Perdana, “Algoritme Genetika Untuk Optimasi K-Means Clustering Dalam Pengelompokan Data Tsunami,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3865–3872, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
A. Primandana, S. Adinugroho, and C. Dewi, “Optimasi Penentuan Centroid pada Algoritme K-Means Menggunakan Algoritme Pillar (Studi Kasus: Penyandang Masalah Kesejahteraan Sosial di Provinsi …,†… Teknol. Inf. dan Ilmu …, vol. 3, no. 11, pp. 10678–10683, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/6748/3264
K. A. Saputra and I. N. W. Wijaya, “Penerapan Algoritma Pillar Untuk Inisialisasi Titik Pusat K- Application of Pillar Algorithm for Initialization of K-Means Dynamic Cluster Centroid,†vol. 7, no. 6, pp. 1213–1220, 2020, doi: 10.25126/jtiik.202072538.
R. T. Aldisa and G. Ginting, “Sistem Pendukung Keputusan Penentuan Pelaku Pariwisata Terbaik dimasa Pandemi Covid-19 Menerapkan Metode OCRA dengan Pembobotan ROC,†vol. 6, no. 5, pp. 1056–1063, 2022, doi: 10.30865/mib.v6i2.4000.
K. Selatan, B. Bali, and K. P. Tuban, “Jurusan Teknik Elektro , Politeknik Negeri Bali , Kampus Bukit Jimbaran ,†vol. 5, no. 5, pp. 621–628, 2018, doi: 10.25126/jtiik2018551120.
T. Online, K. S. Budiyanto, I. P. Windasari, Y. Eko, and D. Ulfiana, “Jurnal Politeknik Caltex Riau Sistem Informasi Geografis berbasis Web untuk Penentuan Prioritas Pembangunan Embung,†vol. 6, no. 2, pp. 169–181, 2020.
J. Han, K. Micheline, and P. Jian, Data Mining. Concept and Techniques, 3rd ed. Waltham: Elsevier, 2012.
M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,†J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.
M. E. Centre, “Selection of K in K -means clustering,†vol. 219, no. September 2004, pp. 103–119, 2005, doi: 10.1243/095440605X8298.
G. Wang et al., “Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Clusterâ€, doi: 10.1088/1757-899X/336/1/012017.
R. Hidayati et al., “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering,†vol. 20, no. 2, pp. 186–197, 2021, doi: https://doi.org/10.33633/tc.v20i2.
R. Ananda and A. Z. Yamani, “Penentuan Centroid Awal K-means pada proses Clustering Data Evaluasi Pengajaran Dosen,†J. RESTI, vol. 1, no. 3, pp. 544–550, 2017.
E. U. Oti, M. O. Olusola, F. C. Eze, and S. U. Enogwe, “Comprehensive Review of K-Means Clustering Algorithms Comprehensive Review of K-Means Clustering Algorithms,†no. October, 2021, doi: 10.31695/IJASRE.2021.34050.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).