Pemanfaatan Algoritma BFGS Quasi-Newton untuk Melihat Potensi Perkembangan Luas Tanaman Kopi di Pulau Sumatera

Authors

  • Safruddin Safruddin Universitas Asahan, Kisaran
  • Elfin Efendi Universitas Asahan, Kisaran
  • Rita Mawarni Universitas Asahan, Kisaran
  • Anjar Wanto STIKOM Tunas Bangsa, Pematangsiantar http://orcid.org/0000-0003-4891-084X

DOI:

https://doi.org/10.30865/mib.v7i1.5524

Keywords:

BFGS Quasi-Newton, Coffee, Plant Area, Development Potential, Sumatera

Abstract

Coffee is one of Indonesia's essential export commodities and a foreign exchange source for the country. One crucial factor in coffee production development is the planted land area. Therefore, the availability of land for coffee plants in Indonesia needs to be maintained for the continuity of coffee production today and in the future. This study aimed to see the potential for the widespread development of coffee plants on the island of Sumatra. This is because the island of Sumatra is the largest coffee producer in Indonesia, so information about the potential for the development of this plant area needs to be known as early as possible, especially for the agriculture/plantation service and for coffee farmers, so that coffee production can be maintained. The algorithm proposed in this study is the Broyden Fletcher Goldfarb Shanno (BFGS) Quasi-Newton algorithm which can be used to solve data prediction (forecasting) problems. This study uses a dataset of coffee plant areas sourced from the Directorate General of Plantations for 2012-2021. This study was analyzed using 3 (three) network architecture models (4-9-1, 4-18-1, and 4-27-1). Based on the analysis, the results obtained from model 4-18-1 as the best architecture with 100% accuracy with minor MSE testing, which is 0.00036764820. Meanwhile, based on predictions made using the best architecture (predictions for 2022 and 2023), the area of coffee plantations has decreased slightly. So this needs serious attention from the respective provincial governments.

Author Biography

Anjar Wanto, STIKOM Tunas Bangsa, Pematangsiantar

SCOPUS ID: 57200091869
Google Scholar ID: zC1cqPcAAAAJ
SINTA ID: 6005673

References

A. Chemura, B. T. Mudereri, A. W. Yalew, and C. Gornott, “Climate change and specialty coffee potential in Ethiopia,†Scientific Reports, vol. 11, no. 1, pp. 1–13, 2021.

L. L. Ruta and I. C. Farcasanu, “Coffee and Yeasts: From Flavor to Biotechnology,†Fermentation, vol. 7, no. 9, pp. 1–16, 2021.

E. Czarniecka-Skubina, M. Pielak, P. Sałek, R. Korzeniowska-Ginter, and T. Owczarek, “Consumer choices and habits related to coffee consumption by poles,†International Journal of Environmental Research and Public Health, vol. 18, no. 8, p. 3948, 2021.

H. Trollman, G. Garcia-Garcia, S. Jagtap, and F. Trollman, “Blockchain for Ecologically Embedded Coffee Supply Chains,†Logistics, vol. 6, no. 3, p. 43, 2022.

M. A. Fitri, R. Syahni, and M. Hendri, “Perbandingan Industri Kopi Indonesia dan Malaysia,†Agrovital : Jurnal Ilmu Pertanian, vol. 7, no. 2, pp. 118–121, 2022.

Z. Mutaqin and H. Haidir, “Strategi Pengembangan Komoditas Unggulan Sektor Pangan Pada Kawasan Agropolitan Di Kota Pagar Alam,†Jurnal Tekno Global, vol. 10, no. 1, pp. 33–40, 2021.

F. Wijaya, “Strategi Bisnis dalam Mengembangkan Usaha Pada Kelompok Tani Kopi Buntis,†Jurnal Indonesia Membangun, vol. 20, no. 1, pp. 1–15, 2021.

S. Budiyanti, “Memahami Makna Kopi dalam Perilaku Keseharian,†Dimensi: Journal of Sociology, vol. 11, no. 1, pp. 12–22, 2022.

D. Chieng and P. M. Kistler, “Coffee and tea on cardiovascular disease (CVD) prevention,†Trends in Cardiovascular Medicine, vol. 32, no. 7, pp. 399–405, 2022.

A. M. Miranda, A. C. Goulart, I. M. Benseñor, P. A. Lotufo, and D. M. Marchioni, “Coffee consumption and risk of hypertension: A prospective analysis in the cohort study,†Clinical Nutrition, vol. 40, no. 2, pp. 542–549, 2021.

S. Yuan, P. Carter, A. M. Mason, S. Burgess, and S. C. Larsson, “Coffee consumption and cardiovascular diseases: A mendelian randomization study,†Nutrients, vol. 13, no. 7, pp. 1–9, 2021.

A. E. Atabani et al., “A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery,†Chemosphere, vol. 286, no. 2, pp. 1–17, 2022.

A. Hejna, “Potential applications of by-products from the coffee industry in polymer technology – Current state and perspectives,†Waste Management, vol. 121, pp. 296–330, 2021.

N. Cordoba, M. Fernandez-Alduenda, F. L. Moreno, and Y. Ruiz, “Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews,†Trends in Food Science and Technology, vol. 96, no. November 2019, pp. 45–60, 2020.

G. V. de Melo Pereira et al., Chemical composition and health properties of coffee and coffee by-products, 1st ed., vol. 91. Elsevier Inc., 2020.

L. R. Batista, S. M. Chalfoun de Souza, C. F. Silva e Batista, and R. F. Schwan, Coffee: Types and Production, 1st ed. Elsevier Ltd., 2016.

M. Hoseini, S. Cocco, C. Casucci, V. Cardelli, and G. Corti, “Coffee by-products derived resources. A review,†Biomass and Bioenergy, vol. 148, no. August 2020, p. 106009, 2021.

D. Alif Fajar Fadhillah, A. Faisol, and N. Vendyansyah, “Penerapan Metode K-Means Clustering Pada Pemetaan Lahan Kopi Di Kabupaten Malang,†JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 1, pp. 162–170, 2022.

C. Rica and E. Salvador, “World coffee production,†Nature, vol. 134, no. 3400, p. 1013, 1934.

S. N. Aeni, “10 Negara Penghasil Kopi Terbesar di Dunia, Indonesia Salah Satunya,†Dkatadata.co.id, 2022. [Online]. Available: https://katadata.co.id/agung/berita/628e09c8406dd/10-negara-penghasil-kopi-terbesar-di-dunia-indonesia-salah-satunya. [Accessed: 01-Dec-2022].

V. A. Dihni, “Brasil Rajai Produksi Kopi pada 2020, Indonesia Urutan Berapa?,†databoks, 2021. [Online]. Available: https://databoks.katadata.co.id/datapublish/2021/11/03/brasil-rajai-produksi-kopi-pada-2020-indonesia-urutan-berapa. [Accessed: 01-Dec-2022].

S. N. Arifa, “5 Provinsi Penghasil Kopi Terbesar di Indonesia,†Good News, 2022. [Online]. Available: https://www.goodnewsfromindonesia.id/2022/10/04/5-provinsi-penghasil-kopi-terbesar-di-indonesia. [Accessed: 04-Oct-2022].

Z. Fitriah, M. H. Tuloli, S. Anam, N. Hidayat, I. Yanti, and D. M. Mahanani, “Backpropagation with BFGS Optimizer for Covid-19 Prediction Cases in Surabaya,†Telematika: Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 2, pp. 157–168, 2021.

V. Rusen, A. Krukonis, and D. Plonis, “Prediction of Parameters of Semiconductor Band-pass Filters using Artificial Neural Network,†2020 IEEE 8th Workshop on Advances in Information, Electronic and Electrical Engineering, AIEEE 2020 - Proceedings, pp. 1–4, 2021.

R. A. Conde-Gutiérrez, D. Colorado, and S. L. Hernández-Bautista, “Comparison of an artificial neural network and Gompertz model for predicting the dynamics of deaths from COVID-19 in México,†Nonlinear Dynamics, vol. 104, no. 4, pp. 4655–4669, 2021.

S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, and H. Asai, “Accelerating symmetric rank-1 Quasi-Newton method with Nesterov’s gradient for training neural networks,†Algorithms, vol. 15, no. 1, pp. 1–16, 2022.

BPS, “Luas Tanaman Perkebunan Menurut Provinsi (Ribu Hektar),†Badan Pusat Statistik, 2022. [Online]. Available: https://www.bps.go.id/indicator/54/131/1/luas-tanaman-perkebunan-menurut-provinsi.html. [Accessed: 01-Dec-2022].

MathWorks, “trainbfg - BFGS quasi-Newton backpropagation,†© 1994-2023 The MathWorks, Inc. [Online]. Available: https://www.mathworks.com/help/deeplearning/ref/trainbfg.html. [Accessed: 02-Dec-2022].

A. Wanto et al., “Analysis of Standard Gradient Descent with GD Momentum And Adaptive LR for SPR Prediction,†2018, pp. 1–9.

P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,†Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,†Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

A. Wanto et al., “Epoch Analysis and Accuracy 3 ANN Algorithm using Consumer Price Index Data in Indonesia,†in Proceedings of the 3rd International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology (ICEST), 2021, no. 1, pp. 35–41.

T. Afriliansyah et al., “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,†Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN,†Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka di Indonesia,†Jurnal semanTIK, vol. 4, no. 1, pp. 49–56, 2018.

B. K. Sihotang and A. Wanto, “Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang,†Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018.

M. Julham, S. Sumarno, F. Anggraini, A. Wanto, and S. Solikhun, “Penerapan Jaringan Syaraf Tiruan dalam Memprediksi Tingkat Kriminal di Kabupaten Simalungun Menggunakan Algoritma Backpropagation,†BRAHMANA: Jurnal Penerapan Kecerdasan Buatan, vol. 1, no. 1, pp. 64–73, 2019.

N. Z. Purba, A. Wanto, and I. O. Kirana, “Implementation of ANN for Prediction of Unemployment Rate Based on Urban Village in 3 Sub-Districts of Pematangsiantar,†International Journal of Information System & Technology (IJISTECH), vol. 3, no. 1, pp. 107–116, 2019.

I. C. Saragih, D. Hartama, and A. Wanto, “Prediksi Perkembangan Jumlah Pelanggan Listrik Menurut Pelanggan Area Menggunakan Algoritma Backpropagation,†Building of Informatics, Technology and Science (BITS), vol. 2, no. 1, pp. 48–54, 2020.

M. Syafiq, D. Hartama, I. O. Kirana, I. Gunawan, and A. Wanto, “Prediksi Jumlah Penjualan Produk di PT Ramayana Pematangsiantar Menggunakan Metode JST Backpropagation,†JURIKOM (Jurnal Riset Komputer), vol. 7, no. 1, p. 175, 2020.

Downloads

Published

2023-01-31