Klasifikasi Gerakan Yoga dengan Model Convolutional Neural Network Menggunakan Framework Streamlit

Authors

  • Mohammad Fikri Nur Syahbani Institut Teknologi Telkom Purwokerto, Purwokerto
  • Nur Ghaniaviyanto Ramadhan Institut Teknologi Telkom Purwokerto, Purwokerto http://orcid.org/0000-0003-0304-516X

DOI:

https://doi.org/10.30865/mib.v7i1.5520

Keywords:

Yoga, Convolutional Neural Network, Streamlit, Image Classification, Deep Learning

Abstract

Indonesian people are not fit and lack sports activities, therefore one of the alternative sports activities is yoga. Yoga is a type of exercise that has two important components, namely breathing and movement. Yoga movements also vary and can be distinguished from body curves, but ordinary people may not be familiar with yoga movements. With advances in technology and computer performance intelligence, it is now possible for computers to recognize an image for object recognition, namely detecting yoga movements using the digital image classification method. To make it easier to classify yoga movements, you can use the CNN model. Convolutional Neural Networks (CNN) are a combination of artificial neural networks with deep learning methods. The CNN process will carry out a training and testing process for yoga movements so that an image classification can be determined from the type of yoga movement. The image of the yoga movement is divided into 80% for training and 20% for testing. The training process is carried out using two different scenarios by differentiating the input image size, batch size, optimizer. The dataset consists of goddess, plank, tree, warrior2, downdog movements. The highest accuracy results are 94.10% using 170 x 170 image input, batch size 32, RMSprop optimizer. The results of testing a total of 40 images of yoga movements, 37 images were correctly guessed. The model that has been trained is implemented into the website using the Streamlit framework.

Author Biography

Nur Ghaniaviyanto Ramadhan, Institut Teknologi Telkom Purwokerto, Purwokerto

Googla Scholar ID: 0daAhtsAAAAJ
SINTA ID: 6773335
SCOPUS ID: 57224934617

References

W. Cahyono, “Kebugaran Orang Indonesia Rendah,†Sindonews.com, 2022. https://nasional.sindonews.com/read/672353/15/kebugaran-orang-indonesia-rendah-1643598094/ (accessed Apr. 14, 2022).

P. N. Fatimah, F. F. Dieny, E. A. Murbawani, and A. F. A. Tsani, “Latihan yoga terhadap berat badan, persen lemak tubuh, dan lingkar perut pada wanita dewasa overweight,†J. Gizi Klin. Indones., vol. 14, no. 4, p. 131, 2018, doi: 10.22146/ijcn.32150.

N. Prastika, “YOGA SASTRA Laku Mistik Balian Usada Bali,†Dharmasmrti, vol. XVII, no. 02, pp. 11–19, 2017,

doi: 10.32795/ds.v17i02.84.

M. M. Rosady and B. Santoso, “Pengembangan Media Interaktif Gerakan Yoga Berbasis Mobile Android Menggunakan Metode User Centered Design,†Sistemasi, vol. 10, no. 3, p. 538, 2021, doi: 10.32520/stmsi.v10i3.1345.

G. N. Panggraita, Sugiharto, and T. Soenyoto, “Pengaruh Latihan Hatha Yoga dan Kapasitas Vital Paru terhadap Penurunan Lemak Tubuh,†J. Phys. Educ. Sport., vol. 6, no. 1, pp. 29–35, 2017, doi: 10.15294/JPES.V6I1.17318.

P. A. Nanda, “Simulasi Visualisasi Teknik Gerakan Yoga Dengan Metode Pengembangan Multimedia Luther- Sutopo Berbasis Mobile,†JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 207, 2020, doi: 10.30865/jurikom.v7i2.1944.

F. Daniel Tanugraha, H. Pratikno, M. Musayanah, and W. Indah Kusumawati, “Pengenalan Gerakan Olahraga Berbasis (Long Short- Term Memory) Menggunakan Mediapipe,†J. Adv. Inf. Ind. Technol., vol. 4, no. 1, pp. 37–45, 2022, doi: 10.52435/jaiit.v4i1.182.

M. Ichwan, A. O. Zerlinda, S. Informatika, I. Teknologi, and N. Bandung, “Implementasi Arsitektur InceptionResNet-v2 dan ( Studi Kasus Klasifikasi Pose Yoga ) Squared Hinge Loss,†vol. 7, no. 2, pp. 124–138, 2022, doi: 10.26760/mindjournal.v7i2.124-138.

A. U. Dessai and H. G. Virani, “YOGA POSE DETECTION AND CLASSIFICATION USING MACHINE LEARNING TECHNIQUES,†vol. 3, no. 12, pp. 11–31, 2022, doi: 10.4018/978-1-6684-5673-6.ch002.

V. Rathikarani, S. Abarna, and K. Vijayakumar, “Classification Of Yoga Pose Using Pretrained Convolutional Neural Networks,†J. Pharm. Negat. Results, vol. 13, no. 8, pp. 3798–3805, 2022, doi: 10.47750/pnr.2022.13.S08.474.

D. Shah, V. Rautela, C. Sharma, and A. A. Florence, “Yoga Pose Detection Using Posenet and k-NN,†2021 Int. Conf. Comput. Commun. Green Eng. CCGE 2021, no. May, 2021, doi: 10.1109/CCGE50943.2021.9776451.

H. Fonda, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn),†J. Ilmu Komput., vol. 9, no. 1, pp. 7–10, 2020, doi: 10.33060/jik/2020/vol9.iss1.144.

G. A. Anwar and D. Riminarsih, “Klasifikasi Citra Genus Panthera Menggunakan Metode Convolutional Neural Network (Cnn),†J. Ilm. Inform. Komput., vol. 24, no. 3, pp. 220–228, 2019, doi: 10.35760/ik.2019.v24i3.2364.

R. A. Pangestu, B. Rahmat, and F. T. Anggraeny, “Implementasi Algoritma CNN untuk Klasifikasi Citra Lahan dan Perhitungan Luas,†Inform. dan Sist. Inf., vol. 1, no. 1, pp. 166–174, 2020, doi: 10.33005/jifosi.v1i1.5.

D. Alamsyah and D. Pratama, “Implementasi Convolutional Neural Networks (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset,†J. Teknol. Inf., vol. 4, no. 2, pp. 350–355, 2020, doi: 10.36294/jurti.v4i2.1714.

Y. Yohannes, S. Devella, and K. Arianto, “Deteksi Penyakit Malaria Menggunakan Convolutional Neural Network Berbasis Saliency,†JUITA J. Inform., vol. 8, no. 1, p. 37, 2020, doi: 10.30595/juita.v8i1.6671.

R. Magdalena, S. Saidah, N. K. C. Pratiwi, and A. T. Putra, “Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT- 6 dengan Metode Convolutional Neural Network (CNN),†J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 335, 2021, doi: 10.26418/jp.v7i3.48195.

N. Hadianto, H. B. Novitasari, and A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,†J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 163–170, 2019, doi: 10.33480/pilar.v15i2.658.

A. Perwira, J. Dwitama, and S. Hidayat, “Identifikasi Ujaran Kebencian Multilabel Pada Teks Twitter Berbahasa Indonesia Menggunakan Convolution Neural Network,†J. Sist. Komput. dan Inform., vol. 3, pp. 117–127, 2021, doi: 10.30865/json.v3i2.3610.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,†JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018, doi: 10.32528/justindo.v3i2.2254.

Fauzi, Muhammad Dzulfikar, et al. "A Hybrid DenseNet201-SVM for Robust Weed and Potato Plant Classification." J. Ilm. Tek. Elek. Kom. dan Inform. (JITEKI)., vol. 8, no. 2, pp. 298-306, 2022.

A. Rosadi et al., “Analisis Sentimen Berdasarkan Opini Pengguna pada Media Twitter Terhadap BPJS Menggunakan Metode Lexicon Based dan Naïve Bayes Classifier,†J. Ilm. Komputasi, vol. 20, no. 1, pp. 39–52, 2021, doi: 10.32409/jikstik.20.1.401.

E. Sutoyo and A. Almaarif, “Educational Data Mining for Predicting Student Graduation Using the Naïve Bayes Classifier Algorithm,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 95–101, 2020, doi: 10.29207/resti.v4i1.1502.

Charisma, Rifqi Alfinnur, et al. "Analisis Penerapan Metode Ensembled Learning Decision Tree Pada Klasifikasi Virus Hepatitis C." Journal of Computer System and Informatics (JoSYC) 3.4 (2022): 405-409.

M. I. Amal Yulianto, “Membuat Aplikasi Web Sains Data Dengan Mudah Menggunakan Streamlit,†Informatics.uii.ac.id, 2021. https://informatics.uii.ac.id/2021/03/15/streamlit-membuat-aplikasi-web-sains-data/ (accessed Apr. 14, 2022).

A. Muzaki and A. Witanti, “Sentiment Analysis of the Community in the Twitter To the 2020 Election in Pandemic Covid-19 By Method Naive Bayes Classifier,†J. Tek. Inform., vol. 2, no. 2, pp. 101–107, 2021, doi: 10.20884/1.jutif.2021.2.2.51.

Downloads

Published

2023-01-31