Prediksi Volume Sampah di TPSA Banyuurip Menggunakan Metode Backpropagation Neural Network
DOI:
https://doi.org/10.30865/mib.v7i1.5499Keywords:
Predict, Garbage Volumes, TPSA, Backpropagation, Time SeriesAbstract
The current waste problem is an important issue in many big cities, including Magelang City. The increasing rate of population growth and the decreasing land area for Banyuurip TPSA also makes it difficult for the government to handle waste, causing a negative impact on the environment around the TPSA. Therefore it is necessary to have a prediction of the volume of waste that enters TPSA every day using the Backpropagation Neural Network method so that it can assist the government in preparing budgets, preparing cleaners and estimating the capacity of TPSA in the future. The data used is time series data in the form of waste volume at Banyuurip TPSA from 2019 to 2022. From the results of the Backpropagation Neural Network method with parameters 30-7-1 and 1000 epochs, the best MSE value is 0.018870. The results of the training will then be used to predict the volume of waste the next day.
References
E. Boedi Orbawati et al., “Peningkatan Kesadaran Masyarakat Untuk Pengelola Sampah Mandiri Melalui Implementasi Teknologi Tepat Guna,†J. Jendela Inov. Drh., vol. 4, no. 2, pp. 66–78, 2021, doi: 10.56354/jendelainovasi.v4i2.107.
L. Priatna, W. Hariadi, and E. K. Purwendah, “Pengelolaan sampah di tempat pembuangan akhir (tpa) Gunung Tugel, Desa Kedungrandu, Kecamatan Patrikaja, Kabupaten Banyumas,†Pros. Semin. Nas. dan Call Pap., vol. 6, no. November, pp. 494–501, 2019.
N. Asiyah, “Kebijakan Pemerintah Kota Langsa Terhadap Pengelolaan Sampah Dalam Memenuhi Prinsip Good Environmental Governance,†J. Huk. Samudra Keadilan, vol. 14, no. 2, pp. 316–327, 2019, doi: 10.33059/jhsk.v14i2.1920.
R. H. Laluma and A. Prasetya, “Prediksi Volume Dan Ritasi Pengelolaan Sampah Di Kota Bandung Dengan Metode Regresi Linear,†vol. D, no. 1, pp. 49–60, 2022.
A. A. A. Purnamaswari, I. K. G. D. Putra, and I. M. S. Putra, “Komparasi Metode Neural Network Backpropagation dan Support Vector Machines dalam Prediksi Volume Sampah TPA Suwung,†JITTER J. Ilm. Teknol. dan Komput., vol. 3, no. 1, pp. 853–861, 2022, [Online]. Available: https://ojs.unud.ac.id/index.php/jitter/article/view/83024/43066.
R. Sistem, D. Kartini, F. Abadi, and T. H. Saragih, “Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural,†vol. 1, no. 10, pp. 39–44, 2021.
D. S. Seruni, M. T. Furqon, and R. C. Wihandika, “Sistem Prediksi Pertumbuhan Jumlah Penduduk Kota Malang menggunakan Metode K-Nearest Neighbor Regression,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, pp. 1075–1082, 2020.
Y. Ramdhani and A. Mubarok, “Analisis Time Series Prediksi Penutupan Harga Saham Antm.Jk Dengan Algoritma SVM Model Regresi,†vol. 1, no. 1, pp. 77–82, 2019.
W. Y. Rusyida and V. Y. Pratama, “Prediksi Harga Saham Garuda Indonesia di Tengah Pandemi Covid-19 Menggunakan Metode ARIMA,†Sq. J. Math. Math. Educ., vol. 2, no. 1, p. 73, 2020, doi: 10.21580/square.2020.2.1.5626.
N. Nafi and P. A. Wulandari, “Prediksi Harga Beras Berdasarkan Kualitas Beras dengan Metode Long Short Term Memory,†pp. 278–288, 2022.
J. Veri, “Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan Crude Oil Price Prediction Using Artificial Neural Network,†vol. 21, no. 3, pp. 503–512, 2022, doi: 10.30812/matrik.v21i3.1382.
P. F. E. Adipraja and M. Islamiyah, “Prediksi Volume Sampah TPAS Talangagung dengan Pendekatan Sistem Dinamik,†smantika, vol. 07, no. 01, pp. 24–28, 2017.
Iqbal Imani Khoirul Akbar, B. Rahmat, and F. Anggraeny, “Implementasi Algoritma Fuzzy Time Series Average-Based Untuk Memprediksi Intensitas Sampah Tempat Pemrosesan Akhir,†J. Inform. dan Sist. Inf., vol. 2, no. 2, pp. 403–412, 2021, doi: 10.33005/jifosi.v2i2.315.
I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,†vol. 17, no. 3, pp. 302–311, 2018.
R. E. Wahyuni, “Optimasi Prediksi Inflasi Dengan Neural Network Pada Tahap Windowing: Adakah Pengaruh Perbedaan Window Size?,†vol. 12, no. 3, pp. 176–181, 2021.
H. Putra and N. Ulfa, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,†vol. 02, pp. 100–107, 2020.
A. Fitriadini et al., “Penerapan Backpropagation Neural Network Dalam Prediksi Harga Saham,†2020.
Guntoro, L. Costaner, and Lisnawita, “Prediksi Jumlah Kendaraan di Provinsi Riau Menggunakan Metode Backpropagation,†vol. 14, no. 1, 2019.
A. Santoso and S. Hansun, “Prediksi IHSG dengan Backpropagation Neural Network,†vol. 1, no. 10, pp. 2–5, 2021.
F. Halawa, “Penerapan Algoritma Genetika Dan Backpropagation Neural Network Untuk Memprediksi Jumlah Penduduk Kota Medan,†Inf. dan Teknol. Ilm., vol. 7, no. 3, pp. 203–207, 2020, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/2388.
N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2612–2618, 2018.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).