Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak (BBM) Menggunakan Metode Logistic Regression

Authors

  • Muhammad Raja Nurhusen Universitas Buana Perjuangan, Karawang
  • Jamaludin Indra Universitas Buana Perjuangan, Karawang
  • Kiki Ahmad Baihaqi Universitas Buana Perjuangan, Karawang

DOI:

https://doi.org/10.30865/mib.v7i1.5491

Keywords:

BBM, Klasification, Logistic Regression, Confusion Matrix, Predict

Abstract

In Indonesia itself, fuel is a very important raw material for society, especially for the industrial sector. The fuel price hike policy sparked controversy on social media, one of which was Twitter. After the increase in fuel prices was passed, every day on Twitter was filled with tweets with the hashtag (#bbmnaik). The pros and cons that exist in the community regarding the increase in fuel prices is an interesting research material. This study aims to analyze public sentiment whether it is negative or supportive. The method used is Logistic Regression assisted by the Confusion Matrix for evaluation calculations. The advantage of this method compared to other methods is that the Logistic Regression method is often used to create a predictive model whose result values are in the form of yes/no, true/false, thus this method is very suitable for this research. The data used is 3000 data with keywords (increase in fuel prices). The results of the analysis that has been carried out show that positive sentiments get an accuracy value of 38% and negative sentiments of 80%. Classification performance of the Logistic Regression method gains 73%. The results of evaluation calculations with the Confusion Matrix using data testing as many as 600 data get an accuracy rate of 77%, a precision value of 95%, a recall value of 79%, and an f1 score of 86%. So it can be concluded from the results of the sentiment analysis that has been done that the public is more pro against the rejection of the increase in fuel prices.

References

U. Kurniasih and A. T. Suseno, “Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) pada Kenaikan Harga Bahan Bakar Minyak (BBM),†J. Media Inform. Budidarma, vol. 6, no. 4, pp. 2335–2340, 2022, doi: 10.30865/mib.v6i4.4958.

S. Mujahidin, B. Prasetio, and M. C. C. Utomo, “Implementasi Analisis Sentimen Masyarakat Mengenai Kenaikan Harga BBM Pada Komentar Youtube Dengan Metode Gaussian naïve bayes,†Voteteknika (Vocational Tek. Elektron. dan Inform., vol. 10, no. 3, p. 17, 2022, doi: 10.24036/voteteknika.v10i3.118299.

R. N. Fahmi, T. Informatika, U. Singaperbangsa, and T. Timur, “Analisis Sentimen Pengguna Twitter Terhadap Kasus Penembakan Laskar FPI Oleh Polri Dengan Metode Naive Bayes Classifier,†vol. 5, no. 2, pp. 61–66, 2021.

A. Kusuma and A. Nugroho, “Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes,†vol. 15, no. 2, pp. 137–146, 2021.

G. Rozy Hrp, N. Aslami, and P. Studi Manajemen Fakultas Ekonomi Bisnis Islam, “Analisis Dampak Kebijakan Perubahan Publik Harga BBM terhadap Perekonomian Rakyat Indonesia,†J. Ilmu Komputer, Ekon. dan Manaj., vol. 2, no. 1, pp. 1464–1474, 2022.

D. Yuliani, S. Saryono, D. Apriani, Maghfiroh, and M. Ro, “Dampak Kenaikan Harga Bahan Bakar Minyak (BBM) Terhadap Sembilan Bahan Pokok (Sembako) Di Kecamatan Tambun Selatan Dalam Masa Pandemi,†J. Citizsh. Virtues, vol. 2, no. 2, pp. 320–326, 2022.

S. A. Assaidi and F. Amin, “Analisis Sentimen Evaluasi Pembelajaran Tatap Muka 100 Persen pada Pengguna Twitter menggunakan Metode Logistic Regression,†vol. 6, pp. 13217–13227, 2022.

A. Novantirani et al., “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,†pp. 1–7, 2015.

N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,†J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 47–58, 2021, doi: 10.28932/jutisi.v7i1.3216.

A. Yoga Pratama et al., “Analisis Sentimen Media Sosial Twitter Dengan Algoritma K-Nearest Neighbor Dan Seleksi Fitur Chi-Square (Kasus Omnibus Law Cipta Kerja),†J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 897–910, 2021.

B. Mas Pintoko and K. Muslim, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier,†e-Proceeding Eng., pp. 8121–8230, 2018.

ubp karawang Amril Muthoi, Teknik informatika, “APLIKASI LINIER REGRESI DENGAN ALGORITMA JARINGAN SYARAF TIRUAN UNTUK SENTIMEN ANALISIS,†Techno Xplore, vol. 3, no. 2, pp. 43–51, 2018.

S. H. S. Kelvin, Jepri Banjarnahor, Evta Indra, “ANALISIS PERBANDINGAN SENTIMEN CORONA VIRUS DISEASE- 2019 ( COVID19 ) PADA TWITTER MENGGUNAKAN METODE LOGISTIC REGRESSION DAN SUPPORT VECTOR MACHINE ( SVM ),†vol. 5, no. 2, 2022.

H. Sanusi, Klasifikasi sentimen terhadap data text jejaring sosial dengan topik pembelajaran daring menggunakan logistic regression. 2021.

P. Y. Saputra, “Implementasi Teknik Crawling untuk Pengumpulan Data dari Media Sosial Twitter,†Din. Dotcom, vol. 8, pp. 160–168, 2017.

H. Simorangkir and K. M. Lhaksmana, “Analisis Sentimen pada Twitter untuk Games Online Mobile Legends dan Arena of Valor dengan Metode Naïve Bayes Classifier,†e-proceeding of Englineering, vol. 5, no. 3, pp. 8131–8140, 2018, [Online]. Available: https://openlibrary.telkomuniversity.ac.id/pustaka/files/144621/jurnal_eproc/analisis-sentimen-pada-twitter-untuk-games-online-mobile-legends-dan-arena-of-valor-dengan-metode-na-ve-bayes-classifier.pdf

F. D. Ananda and Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 407–416, 2021, doi: 10.30812/matrik.v20i2.1130.

R. Rosdiana, T. Eddy, S. Zawiyah, and N. Y. U. Muhammad, “Analisis Sentimen pada Twitter terhadap Pelayanan Pemerintah Kota Makassar,†Proceeding SNTEI, no. June 2020, pp. 87–93, 2019.

R. A. Saputra and S. Waluyo, “Penerapan Algoritma Naive Bayes Dalam Analisis Kenaikan Bahan Bakar Minyak Pada Twitter,†Semin. Nas. Mhs. Fak. Teknol. Inf. Jakarta-Indonesia, no. September, pp. 569–575, 2022, [Online]. Available: https://senafti.budiluhur.ac.id/index.php

M. Y. Aldean, M. D. Hilmawan, R. Indriyati, and J. Lasama, “Analisa Relevansi Tweet terhadap Hashtag dengan Metode Logistic Regression,†2019.

Downloads

Published

2023-01-28