Penerapan Convolutional Neural Network pada Timbangan Pintar Menggunakan ESP32-CAM

Authors

  • Hanung Pangestu Rahman Universitas Buana Perjuangan Karawang, Karawang
  • Jamaludin Indra Universitas Buana Perjuangan Karawang, Karawang
  • Rahmat Rahmat Universitas Buana Perjuangan Karawang, Karawang

DOI:

https://doi.org/10.30865/mib.v7i1.5469

Keywords:

ESP32-CAM, CNN, Smart Scales, Load Cell, Microcontroller

Abstract

Scales are needed by traders, including vegetable traders, but the scales created in the market can only determine the weight. That way traders need time to calculate the price based on the weight and type of vegetables. In previous research there has been research on smart scales that can calculate the total price based on the weight and type of vegetables being weighed, this study used the Raspberry Pi 3 Model B and the Convolutional Neural Network (CNN) as a method for the scales to be able to identify the types of vegetables that are on it. Along with the rapid development of technology, the price of the Raspberry Pi for all variants has increased in price. Therefore the need for research on smart scales with components that have relatively cheaper prices. In this study, researchers used the ESP32-CAM microcontroller, which is priced relatively cheaper than the Raspberry Pi 3 Model B. This research still uses the Convolutional Neural Network (CNN) method and a load cell equipped with the HX711 module as a sensor to obtain the weight value of an object. The dataset collected totaled 600 image data with 150 image data for each type of vegetable, classes in the training data consisted of tomatoes, cabbage, carrots, and potatoes. Smart scales using the ESP32-CAM get results of a classification accuracy of 90% and the average difference of the tools built is 0.8 grams compared to the SF-400 brand digital scales.

References

A. M. Muslimin and T. Lestari, “Perancangan Alat Timbangan Digital Berbasis Arduino Leonardo Menggunakan Sensor Load Cell,†J. Nat., vol. 17, no. 1, pp. 50–63, 2021, doi: 10.30862/jn.v17i1.145.

F. Femling, A. Olsson, and F. Alonso-Fernandez, “Fruit and Vegetable Identification Using Machine Learning for Retail Applications,†Proc. - 14th Int. Conf. Signal Image Technol. Internet Based Syst. SITIS 2018, pp. 9–15, 2018, doi: 10.1109/SITIS.2018.00013.

F. Maulana, J. Indra, S. A. P. Lestari, and Universitas, “Penerapan Convolutional Neural Network pada Timbangan Pintar Sayuran Menggunakan Raspberry Pi,†vol. II, pp. 1–9, 2021.

A. H. Bachtiar, P. P. Surya, and R. P. Astutik, “Rancang Bangun Dual Keamanan Sistem Pintu Rumah Menggunakan Pengenalan Wajah Dan Sidik Jari Berbasis Iot (Internet of Things),†J. POLEKTRO J. Power Elektron., vol. 1, no. 1, pp. 102–107, 2022.

A. F. Saputra and C. Darujati, “Sistem Presensi Mahasiswa Berbasis Realtime Kamera Metode Klasifikasi Haar,†J. Tek. Elektro dan Komput., vol. 9, no. 3, pp. 137–144, 2020.

W. Ariansyah, D. N. Ilham, K. Khairuman, and R. A. Candra, “Opening Doors Using Internet Of Things (IoT) Based Face Recognition,†Brill. Res. Artif. Intell., vol. 1, no. 2, pp. 32–37, 2021, doi: 10.47709/brilliance.v1i2.1095.

A. Prayogie et al., “Alat Pengukur Tinggi Dan Berat Badan Otomatis Menggunakan Sensor Ultrasonic Dan Loadcell Berbasis Internet Of Things,†vol. 06, no. 01, 2022.

D. R. Maulana, T. Rohana, and Adi Rizky Pratama, “Alat Ukur Tinggi dan Berat Badan Berbasis Arduino Uno,†Acad. J. Comput. Sci. Res., vol. 3, no. 1, pp. 191–196, 2021, doi: 10.38101/ajcsr.v3i1.328.

A. Lioga Seandrio, A. Hendrianto Pratomo, and M. Y. Florestiyanto, “Implementation of Convolutional Neural Network (CNN) in Facial Expression Recognition Implementasi Convolutional Neural Network (CNN) Pada Pengenalan Ekspresi Wajah,†J. Inform. dan Teknol. Inf., vol. 18, no. 2, pp. 211–221, 2021, doi: 10.31515/telematika.v18i2.4823.

V. Khotsianivskyi and M. Omelchenko, “Image Processing on Esp32 Microcontrollers Based on Mobilenet Convolutional Neural Network,†pp. 0–1, 2022, doi: 10.36074/logos-20.05.2022.048.

R. A. Malik and E. Zuliarso, “Metode Convolutional Neural Network Untuk Mendeteksi Jenis Sayur Menggunakan Tensorflow,†Media Bina Ilmaih, vol. 15, no. 1978, pp. 5873–5882, 2021.

Y. Bili, E. Purba, N. F. Saragih, A. P. Silalahi, and S. Sitepu, “Perancangan Alat Pendeteksi Kematangan Buah Nanas Dengan Menggunakan Mikrokontroler Dengan Metode Convolutional Neural Network ( CNN ),†vol. 2, no. 1, pp. 13–21, 2022.

E. I. Haksoro and A. Setiawan, “Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network,†J. ELTIKOM, vol. 5, no. 2, pp. 81–91, 2021, doi: 10.31961/eltikom.v5i2.428.

A. Gunawan, S. R. Riady, and I. Nawangsih, “Penerapan Timbangan Ikan Pintar dalam Meningkatkan Ekonomi UKM Masyarakat Pesisir Berbasis IoT,†J. Tekno Insentif, vol. 16, no. 1, pp. 69–78, 2022, doi: 10.36787/jti.v16i1.695.

W. Indani and A. Wahyudi, “Timbangan Digital Buah Kelapa Sawit Berbasis Internet of Things ( IoT ),†J. Politek. Caltex Riau, vol. 8, no. 2, 2022.

C. Berliana and M. Hafiz Hersyah, “Rancang Bangun Timbangan Beras Digital Dengan Keluaran Tiga Jenis Beras Berbasis Mikrokontroler,†Chipset, vol. 3, no. 02, pp. 102–110, 2022, doi: 10.25077/chipset.3.02.102-110.2022.

A. Nurfauzi, A. C. Ramadhan, and M. R. A. Cahyono, “RANCANG BANGUN ALAT PEMANTAU BERAT MENGGUNAKAN ANDROID BERBASIS MIKROKONTROLER,†vol. 4, pp. 1–10, 2022.

Rusdiyanto, Zulfauzi, and A. Zulius, “Perancangan Timbangan Pencatat Hasil Panen Otomatis Menggunakan Mikrokontroler Berbasis Web Dan Database,†Jusikom J. Sist. Komput. Musirawas, vol. 4, no. 02, pp. 93–99, 2019, doi: 10.32767/jusikom.v4i2.635.

P. N. Dacipta and R. E. Putra, “Sistem Klasifikasi Limbah Menggunakan Metode Convolutional Neural Network ( CNN ) Pada Web Service Berbasis Framework Flask,†vol. 03, pp. 394–402, 2022.

U. S. Utara, “Pengembangan Model Protis Neural Network Untuk Prediksi dan Klasifikasi Data Timeseries dan Image,†vol. 4, pp. 1–7, 2022.

M. Sholawati, K. Auliasari, and F. X. Ariwibisono, “Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (CNN),†vol. 6, no. 1, pp. 134–144, 2022.

Downloads

Published

2023-01-28