Deteksi Penyakit Epilepsi Melalui Sinyal EEG Menggunakan Metode DWT dan Extreme Gradient Boosting
DOI:
https://doi.org/10.30865/mib.v7i1.5412Keywords:
Discrete Wavelet Transform, EEG, Epilepsy, Extreme Gradient Boosting, ClassificationAbstract
Epilepsy is a disorder of the central nervous system due to excessive patterns of electrical activity in the brain. This disease causes patients to experience repeated seizures in one or all parts of the body. Therefore, epilepsy must be detected early so that the patient immediately gets the right treatment so that the condition does not get worse. This study proposes the detection of epilepsy using the Discrete Wavelet Transform method for feature extraction and Extreme Gradient Boosting for classification. Detection results are classified into two classes, namely seizures and non-seizures. The EEG recording data used came from CHIB MIT Hospital Boston which was obtained online. In the classification process, this study uses four comparisons of the percentage of training data and test data as well as tuning parameters which are processed by Randomized Search Cross Validation. The combination of these methods produces the highest accuracy, namely 85.15% which is produced by the percentage of 80% training data and 20% test data. However, these results experienced a high overfitting of 13.54%. As for the most fit results produced by the research, namely an accuracy value of 81% with a training score of 88.65% and a test score of 81.20% resulting from a percentage of 80% training data and 20% test data.References
A. M. Gelgel and T. Sarongku, “PEMERIKSAAN PET DAN SPECT SCAN PADA BEDAH EPILEPSI,†Callosum Neurology, vol. 3, no. 3, 2020, doi: 10.29342/cnj.v3i3.128.
N. L. Muzayyanah, S. Hapsara, and T. Wibowo, “Kejang Berulang dan Status Epileptikus pada Ensefalitis sebagai Faktor Risiko Epilepsi Pascaensefalitis,†Sari Pediatri, vol. 15, no. 3, 2016, doi: 10.14238/sp15.3.2013.150-5.
M. N. Saefulloh, R. D. I. Astuti, W. Nurruhyuliawati, Y. Andriane, and M. K. Dewi, “Hubungan Lama Pengobatan dan Jenis Obat Anti Epilepsi dengan Derajat Depresi pada Pasien Epilepsi,†Jurnal Integrasi Kesehatan & Sains, vol. 1, no. 2, 2019, doi: 10.29313/jiks.v1i2.4344.
N. K. C. Pratiwi, R. Magdalena, Y. N. Fuadah, S. Saidah, S. Rizal, and M. R. Isnaini, “Denoising Sinyal EEG dengan Algoritma Recursive Least Square dan Least Mean Square,†TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol, vol. 5, no. 2, 2019, doi: 10.15575/telka.v5n2.122-129.
J. Teye Brown and W. Zgallai, “Deep EEG: Deep learning in biomedical signal processing with EEG applications,†in Biomedical Signal Processing and Artificial Intelligence in Healthcare, 2020. doi: 10.1016/b978-0-12-818946-7.00005-6.
A. al-Qerem, F. Kharbat, S. Nashwan, S. Ashraf, and khairi blaou, “General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution,†Int J Distrib Sens Netw, vol. 16, no. 3, 2020, doi: 10.1177/1550147720911009.
W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,†SISTEMASI, vol. 10, no. 1, 2021, doi: 10.32520/stmsi.v10i1.1129.
A. M. Husein, F. R. Lubis, and M. K. Harahap, “Analisis Prediktif untuk Keputusan Bisnis : Peramalan Penjualan,†Data Sciences Indonesia (DSI), vol. 1, no. 1, 2021, doi: 10.47709/dsi.v1i1.1196.
A. Eviyanti, H. Hindarto, Sumarno, and H. A. A. Duddin, “Epilepsi detection system based on EEG record using neural network backpropagation method,†in Journal of Physics: Conference Series, 2019, vol. 1381, no. 1. doi: 10.1088/1742-6596/1381/1/012037.
M. Mulaab, “DETEKSI KEJANG EPILEPSY DENGAN MENGGUNAKAN PEMILIHAN FITUR INFORMATIOAN GAIN DAN PEMBELAJARAN ENSEMBLE RANDOM FOREST,†Jurnal Simantec, vol. 9, no. 2, 2021, doi: 10.21107/simantec.v9i2.11084.
A. Eviyanti, H. Hindarto, and M. Abror, “Peningkatan Ekstrasi Ciri Sinyal Epilepsi Menggunakan Teknik Sampling,†Telematika, 2020, [Online]. Available: https://ejournal.amikompurwokerto.ac.id/index.php/telematika/article/view/964
S. Noertjahjani, “ANALISIS TIPE WAVELET COIFLETS 1 DAN COIFLETS 5 UNTUK DETEKSI PENYAKIT EPILEPSI,†2022.
Y. Sugianela, Q. L. Sutino, and D. Herumurti, “EEG CLASSIFICATION FOR EPILEPSY BASED ON WAVELET PACKET DECOMPOSITION AND RANDOM FOREST,†Jurnal Ilmu Komputer dan Informasi, vol. 11, no. 1, 2018, doi: 10.21609/jiki.v11i1.549.
I. Muslim and K. Karo, “Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan,†Journal of Software Engineering, Information and Communication Technology, vol. 1, no. 1, 2020.
E. H. Yulianti, O. Soesanto, and Y. Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,†JOMTA Journal of Mathematics: Theory and Applications, vol. 4, no. 1, 2022.
H. Sunata, “Komparasi Tujuh Algoritma Identifikasi Fraud ATM Pada PT. Bank Central Asia Tbk,†JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 3, 2020, doi: 10.35957/jatisi.v7i3.471.
P. M. Kouate, “Machine Learning: GridSearchCV & RandomizedSearchCV,†https://towardsdatascience.com/machine-learning-gridsearchcv-randomizedsearchcv-d36b89231b10, Sep. 11, 2020.
M. S. ANGGREANY, “Confusion Matrix,†https://socs.binus.ac.id/2020/11/01/confusion-matrix/, Nov. 01, 2020.
R. Maulid, “Kriteria Jenis Teknik Analisis Data dalam Forecasting,†https://www.dqlab.id/kriteria-jenis-teknik-analisis-data-dalam-forecasting, Jan. 14, 2022.
A. A. Suryanto, A. Muqtadir, and S. Artikel, “PENERAPAN METODE MEAN ABSOLUTE ERROR (MEA) DALAM ALGORITMA REGRESI LINEAR UNTUK PREDIKSI PRODUKSI PADI Info Artikel : ABSTRAK,†no. 1, p. 11, 2019.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).