Implementasi Deep Learning Menggunakan Metode You Only Look Once untuk Mendeteksi Rokok
DOI:
https://doi.org/10.30865/mib.v7i1.5409Keywords:
Cigarette, CNN, Deep Learning, Object Detection, YOLOAbstract
Cigarettes are processed products from tobacco products which are used by burning and then smoked. Smoking activities are often found in everyday life, including in public infrastructure. The approach taken to prevent this activity generally uses manual information or human intervention. In terms of this approach, there are often many problems and failures due to the lack of manpower and supporting rules. Therefore, this study was structured with the aim of being able to detect smoking objects in real time using the You Only Look Once (YOLO) method. YOLO which is based on deep learning is very good at detecting objects, this model provides a single convolution neural network in assigning location and classification. So that in its application, YOLO is very fast in detecting and recognizing objects. This study conducted experiments on the training dataset in testing the YOLOv3, YOLOv3-Tiny and YOLOv4 models. The best training results were obtained in the YOLOv4 model with a composition of 80% training and 20% validation data sharing with a Mean Average Precision (mAP) of 92.54% and an F1-Score of 0.89. This study also conducted experiments on testing to detect cigarettes in real time, where the system can detect cigarettes up to a distance of 4.5 meters, and the highest detection accuracy is obtained at a distance of 1 meter, namely 99.03%.References
E. Nuraeni, I. Yoyoh, E. Wibisana, and D. Mardiana, “Hubungan Tingkat Pengetahuan Dengan Peilaku Merokok Di SMK Sasmita Jaya I Pamulung,†J. Kesehat. Masy., vol. 6, no. 2, pp. 2–7, 2021.
L. Arief, A. Z. Tantowi, N. P. Novani, and T. A. Sundara, “Implementation of YOLO and smoke sensor for automating public service announcement of cigarette’s hazard in public facilities,†2020 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2020 - Proc., pp. 101–107, 2020, doi: 10.1109/ICITSI50517.2020.9264972.
C. B. Murthy, M. F. Hashmi, N. D. Bokde, and Z. W. Geem, “Investigations of object detection in images/videos using various deep learning techniques and embedded platforms-A comprehensive review,†Appl. Sci., vol. 10, no. 9, 2020, doi: 10.3390/app10093280.
S. M. Humphries et al., “Deep learning enables automatic classification of emphysema pattern at CT,†Radiology, vol. 294, no. 2, pp. 434–444, 2020, doi: 10.1148/radiol.2019191022.
D. Garg, P. Goel, S. Pandya, A. Ganatra, and K. Kotecha, “A Deep Learning Approach for Face Detection using YOLO,†Proc. 5th Int. Conf. Trends Electron. Informatics, ICOEI 2021, pp. 760–764, 2018, doi: 10.1109/ICOEI51242.2021.9452896.
J. Tao, H. Wang, X. Zhang, X. Li, and H. Yang, “An object detection system based on YOLO in traffic scene,†Proc. 2017 6th Int. Conf. Comput. Sci. Netw. Technol. ICCSNT 2017, vol. 2018-Janua, pp. 315–319, 2018, doi: 10.1109/ICCSNT.2017.8343709.
J. Liao and J. Zou, “Smoking target detection based on Yolo V3,†in Proceedings - 2020 5th International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2020, Dec. 2020, pp. 2241–2244, doi: 10.1109/ICMCCE51767.2020.00486.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,†2020, [Online]. Available: http://arxiv.org/abs/2004.10934.
K. Zhao and X. Ren, “Small Aircraft Detection in Remote Sensing Images Based on YOLOv3,†IOP Conf. Ser. Mater. Sci. Eng., vol. 533, no. 1, 2019, doi: 10.1088/1757-899X/533/1/012056.
A. Pundhir, D. Verma, P. Kumar, and B. Raman, “Region extraction based approach for cigarette usage classification using deep learning,†2021, [Online]. Available: http://arxiv.org/abs/2103.12523.
S. Wang, “Research towards Yolo-Series Algorithms: Comparison and Analysis of Object Detection Models for Real-Time UAV Applications,†J. Phys. Conf. Ser., vol. 1948, no. 1, 2021, doi: 10.1088/1742-6596/1948/1/012021.
D. S. Aulia, C. Setianingsih, and M. Kallista, “Deteksi Tanda Kehidupan Pada Korban Bencana Alam Dengan Algoritma Yolo Dan Open Pose Life Sign Detector Using You Only Look Once ( Yolo ) and Open Pose,†e-Proceeding Eng., vol. 8, no. 5, pp. 6162–6174, 2021.
M. Muhaimin and T. W. Sen, “Real-Time Detection of Face Masked and Face Shield Using YOLO Algorithm with Pre-Trained Model and Darknet,†Indones. J. Artif. Intell. Data Min., vol. 4, no. 2, pp. 97–107, 2021.
Y. N. Fuadah, S. Saidah, N. K. Sy, R. Magdalena, and I. Da’wan Ubaidullah, “Glaucoma Classification Based on Fundus Images Processing With Convolutional Neural Network,†J. Tek. Inform., vol. 3, no. 3, pp. 717–722, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.3.276.
T. A. A. H. Kusuma, K. Usman, and S. Saidah, “PEOPLE COUNTING FOR PUBLIC TRANSPORTATIONS USING YOU ONLY LOOK ONCE METHOD,†J. Tek. Inform., vol. 2, no. 1, pp. 57–66, 2021, doi: 10.20884/1.jutif.2021.2.2.77.
M. D. Anggraini and H. Al Fatta, “SOCIAL DISTANCING DETECTION FINDING OPTIMAL ANGLE WITH YOLO V3 DETEKSI SOCIAL DISTANCING MENCARI SUDUT OPTIMAL DENGAN METODE DEEP LEARNING YOLO V3,†J. Tek. Inform., vol. 3, no. 5, pp. 1449–1454, 2022.
J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,†2018, [Online]. Available: http://arxiv.org/abs/1804.02767.
H. Gong, H. Li, K. Xu, and Y. Zhang, “Object Detection Based on Improved YOLOv3-tiny,†Proc. - 2019 Chinese Autom. Congr. CAC 2019, no. 61421070104, pp. 3240–3245, 2019, doi: 10.1109/CAC48633.2019.8996750.
A. S. Riyadi, I. P. Wardhani, M. S. Wulandari, and S. Widayati, “Perbandingan Metode ResNet, YoloV3, dan TinyYoloV3 pada Deteksi Citra dengan Pemrograman Python,†Petir, vol. 15, no. 1, pp. 135–144, 2022, doi: 10.33322/petir.v15i1.1302.
J. Yu and W. Zhang, “Face Mask Wearing Detection Algorithm Based on,†Sensors, vol. 21, p. 3263, 2021.
H. R. Yudistira and Lina, “HUMAN ACTIVITY RECOGNATION DARI REKAMAN VIDEO PENGAWAS DENGAN METODE YOLO,†J. Ilmu Komput. dan Sist. Inf., vol. 10, pp. 1–5, 2022.
H. Hammam, A. Asyhar1, S. A. Wibowo2, and G. Budiman3, “Implementasi Dan Analisis Performansi Metode You Only Look Once (Yolo) Sebagai Sensor Pornografi Pada Video Implementation and Performance Analysis of You Only Look Once (Yolo) Method As Porn Censorship in Video,†e-Proceeding Eng., vol. 7, no. 2, pp. 3631–3638, 2020.
N. K. C. PRATIWI, N. IBRAHIM, Y. N. FU’ADAH, and S. RIZAL, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,†ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 306, 2021, doi: 10.26760/elkomika.v9i2.306.
B. Oxy, E. Andriyansyah, and I. Hariyanti, “IMPLEMENTASI RECURRENT NEURAL NETWORK UNTUK DETEKSI DETAK Keywords : Heartbeat , Application , Facial Digital Image Processing , Recurrent neural network,†vol. 17, pp. 11–18, 2022.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).