Comparison of IndoBERTweet and Support Vector Machine on Sentiment Analysis of Racing Circuit Construction in Indonesia
DOI:
https://doi.org/10.30865/mib.v7i1.5380Keywords:
IndoBERTweet, K-Fold Cross Validation, Racing Circuit, Sentiment Analysis, Support Vector MachineAbstract
The construction of the circuit is one of the policies made by the Indonesian government to advance the tourism sector and improve the national economy. This policy triggers various opinions given by the public, primarily through social media Twitter, both in the form of positive and negative opinions. This study compares machine learning and deep learning algorithms, Support Vector Machine and IndoBERTweet, that will be used as a model to predict the sentiment of racing circuit construction tweets. These models are built with K-Fold cross-validation to obtain the overall model’s performance for the entire dataset. Based on the experiments that have been carried out, it shows that IndoBERTweet performs better than the Support Vector Machine, with an overall accuracy score of 86%, a precision score of 88.2%, a recall score of 88.6%, and an f1-score of 88.4% for the entire dataset. Meanwhile, the Support Vector Machine model only achieves 82% for the accuracy score, 87.3% for the precision score, 84.3% for the recall score, and 85.8% for the f1-score. In addition, the best accuracy value from each iteration for IndoBERTweet is 94%, and the Support Vector Machine is 93%.References
R. Prabowo and A. Sutanto, “Analisis Pengaruh Struktur Modal, dan Likuiditas terhadap Profitabilitas pada Perusahaan Sektor Otomotif di indonesia,†Jurnal Samudra Ekonomi dan Bisnis, vol. 10, no. 1, pp. 1–11, 2019, doi: 10.33059/jseb.v10i1.1120.
L. D. Dávid, B. Remenyik, C. Molnár, R. Baiburiev, and K. Csobán, “The impact of the Hungaroring Grand Prix on the Hungarian tourism industry,†Event Management, vol. 22, no. 4, pp. 671–674, 2018, doi: 10.3727/152599518X15300559276985.
I. F. Ulfah and B. Maulana, “Analisis Dampak Pembangunan Sirkuit Motogp Terhadap Umkm Di Sekitar Pantai Kuta Mandalika,†Journal of Sharia Economic and Islamic Tourism, vol. 1, no. 3, pp. 1–8, 2021, doi: https://doi.org/10.31764/jseit.v1i1.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),†Jurnal Media Informatika Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,†Journal of Information System Management (JOISM), vol. 3, no. 2, pp. 44–49, 2021, doi: 10.24076/joism.2021v3i2.558.
B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,†Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.
A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor,†JISKA (Jurnal Informatika Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018, doi: 10.14421/jiska.2018.31-01.
Y. Chandra and A. Jana, “Sentiment Analysis using Machine Learning and Deep Learning,†7th International Conference on Computing For Sustainable Global Development (INDIACom), 2020, doi: 10.23919/INDIACom49435.2020.9083703.
H. Vasudevan, A. Michalas, S. Narendra, and M. Narvekar, “Advance Computing Technologies and Applications,†Singapore, 2020. doi: 10.1007/978-981-15-3242-9_35.
K. S. Nugroho, A. Y. Sukmadewa, H. Wuswilahaken Dw, F. A. Bachtiar, and N. Yudistira, “BERT Fine-Tuning for Sentiment Analysis on Indonesian Mobile Apps Reviews,†ACM International Conference Proceeding Series, pp. 258–264, 2021, doi: 10.1145/3479645.3479679.
F. Koto, J. H. Lau, and T. Baldwin, “IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization,†pp. 10660–10668, 2021, doi: 10.18653/v1/2021.emnlp-main.833.
M. Yasen and S. Tedmori, “Movies Reviews Sentiment Analysis and Classification,†IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), 2019, doi: 10.1109/JEEIT.2019.8717422.
A. Asroni, H. Fitri, and E. Prasetyo, “Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik),†Semesta Teknika, vol. 21, no. 1, 2018, doi: 10.18196/st.211211.
M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi,†IOP Conf Ser Mater Sci Eng, vol. 874, no. 1, 2020, doi: 10.1088/1757-899X/874/1/012017.
A. W. Pradana and M. Hayaty, “The Effect of Stemming and Removal of Stopwords on the Accuracy of Sentiment Analysis on Indonesian-language Texts,†Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 375–380, Oct. 2019, doi: 10.22219/kinetik.v4i4.912.
G. L. Chao and I. Lane, “BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer,†Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, vol. 2019-Septe, pp. 1468–1472, 2019, doi: 10.21437/Interspeech.2019-1355.
X. Wu, T. Zhang, L. Zang, J. Han, and S. Hu, “Mask and infill: Applying masked language model to sentiment transfer,†IJCAI International Joint Conference on Artificial Intelligence, vol. 2019-Augus, pp. 5271–5277, 2019, doi: 10.24963/ijcai.2019/732.
A. M. Puspitasari, D. E. Ratnawati, and A. W. Widodo, “Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine,†J-Ptiik, vol. 2, no. 2, pp. 1–9, 2018.
A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2789–2797, 2019.
W. K. Mutlag, S. K. Ali, Z. M. Aydam, and B. H. Taher, “Feature Extraction Methods: A Review,†in Journal of Physics: Conference Series, Aug. 2020, vol. 1591, no. 1. doi: 10.1088/1742-6596/1591/1/012028.
Z. Munawar, N. I. Putri, and D. Z. Musadad, “Meningkatkan Rekomendasi Menggunakan Algoritma Perbedaan Topik,†Jurnal Sistem Informasi, vol. 01, no. 02, pp. 17–26, 2020.
I. Nawangsih, I. Melani, S. Fauziah, and A. I. Artikel, “Pelita Teknologi Prediksi Pengangkatan Karyawan dengan Metode Algoritma C5.0 (Studi Kasus PT. Mataram Cakra Buana Agung),†Jurnal Pelita Teknologi, vol. 16, no. 2, pp. 24–33, 2021, doi: https://doi.org/10.37366/pelitatekno.v16i2.672.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).