Penerapan Data Mining untuk Klasifikasi Hasil Panen Jamur Tiram Menggunakan Algoritma K-Nearest Neighbor
DOI:
https://doi.org/10.30865/mib.v7i1.5252Keywords:
Data Mining, Yields, Oyster mushroom, Classification, K-Nearest NeighborsAbstract
Oyster mushroom is a type of mushroom that can be consumed by humans. Lots of food products are made from processed oyster mushrooms. This makes mushroom farmers intensively cultivate oyster mushrooms because they see good economic prospects. However, not all mushroom cultivation processes can be successful so it will have an impact on the yield of the oyster mushrooms. So it is necessary to classify so that it is easier for mushroom farmers to determine the amount of yield from the oyster mushroom. The classification was carried out because of the difficulty of mushroom farmers in determining the amount of harvest by looking at the width of the mushroom caps, the number of mushroom caps to the mushroom harvest time. This study proposes a data mining technique to classify oyster mushroom yields using the K-Nearest Neighbors algorithm so that it can help mushroom farmers in determining the yield of oyster mushrooms being cultivated. This study used a dataset of 42 mushrooms as training data and 1 mushroom data to determine the classification of the crops. From the results of testing on 1 mushroom with a cap width of 8 cm, the number of caps is 14 pieces and the harvest time is 49 days, the results of classification results obtained from this mushroom are Less with a Mean absolute error of 0.1419, Root mean squared error of 0.2111, Relative absolute error of 36.2177% and Root relative squared error of 48.002%. The results of this research can help mushroom farmers in classifying oyster mushroom yields.References
D. Darsilowati, A. A. Riadi, and E. Evanita, “Klasifikasi Jenis Jamur Konsumsi Berbasis Android Menggunakan Metode K-Nearset Neighbors (KNN),†J. Appl. Sci. Technol., vol. 1, no. 02, p. 22, 2021, doi: 10.30659/jast.1.02.22-29.
J. N. Hasanati et al., “Inventarisasi dan Identifikasi Jamur Konsumsi yang diperdagangkan di Beberapa Pasar Swalayan di Kota Tangerang dan Bekasi,†Pros. Semin. Nas. Biol., vol. 1, no. 2, pp. 1312–1323, 2021, [Online]. Available: https://semnas.biologi.fmipa.unp.ac.id/index.php/prosiding/article/view/234.
D. R. Khasanah, S. Sunarto, and E. S. Prabowo, “Pengaruh kegiatan Pemasaran terhadap Peningkatan Hasil Produksi Jamur Tiram,†J. Manaj. dan Akunt. Medan, vol. 3, no. 2, pp. 62–73, 2021, doi: 10.53950/jma.v3i2.82.
M. Machfudi, A. Supriyatna, and H. Hendrawan, “Budidaya Jamur Tiram Sebagai Peluang Usaha (Studi Kasus Puslit Biologi LIPI),†Community Dev. J. J. Pengabdi. Masy., vol. 2, no. 1, pp. 127–135, 2021, doi: 10.31004/cdj.v2i1.1396.
M. I. Wahyudi, B. Tripama, H. Prayuginingsih, and T. T. Warisaji, “Diversifikasi Produk Olahan Jamur Tiram untuk Menunjang Perekonomian Masyarakat di Kabupaten Jember,†Agrokreatif J. Ilm. Pengabdi. Kpd. Masy., vol. 7, no. 1, pp. 13–21, 2021, doi: 10.29244/agrokreatif.7.1.13-21.
Y. K. Syadi, E. Handarsari, and Triyono, “Diversifikasi Jamur Tiram Sebagai Penyedap Rasa Alami,†Pros. Semin. Nas. Unimus, vol. 2, pp. 34–39, 2019, [Online]. Available: https://prosiding.unimus.ac.id/index.php/semnas/article/view/362.
Alridiwirsah and A. A. Suprianto, “Analisis Usaha Budidaya Jamur Tiram Putih (Pleurotus Ostreatus) Dibawah Kelapa Sawit,†Proceding Semin. Nas. Kewirausahaan, pp. 91–96, 2021, doi: 10.30596/snk.v2i1.8230.
Y. Dewanata, M. Bettiza, and T. Suhendra, “Sistem Monitoring Suhu Dan Kelembapan Budidaya Jamur Tiram Dengan Metode Logika Fuzzy Mamdani Berbasis Internet Of Things (Studi Kasus: Kumbung Jamur Tiram Tanjungpinang),†Student Online J. Umr. - Tek., vol. 2, no. 2, pp. 578–590, 2021, [Online]. Available: https://soj.umrah.ac.id/index.php/SOJFT/article/view/1417.
D. Damayanti, “Implementasi Algoritma C4.5 Prediksi Produksi Komoditas Tanaman Perkebunan Berdasarkan Luas Lahan,†TIN Terap. Inform. Nusant., vol. 2, no. 10, pp. 571–579, 2022, doi: 10.47065/tin.v2i10.1026.
M. I. Hadiwibowo and F. F. Rahani, “Data Mining Dalam Penentuan Pemesanan Buku Perpustakaan UAD dengan Menggunakan Metode Naïve Bayes,†J. Media Inform. …, vol. 6, no. 4, pp. 2165–2170, 2022, doi: 10.30865/mib.v6i4.4381.
A. Lili, S. Suhada, and S. Widodo, “Pengelompokan Hasil Panen Kelapa Sawit Dalam Produksi Per Blok Menggunakan Algoritma K-Means,†J. Mach. Learn. Data Anal., vol. 01, no. 01, pp. 45–54, 2022, [Online]. Available: https://journal.fkpt.org/index.php/malda/article/view/163.
E. P. W. Mandala and D. E. Putri, Data Mining Asosiasi dan Klasterisasi Produk pada Toko Retail. Solok: Penerbit Insan Cendekia Mandiri, 2022.
F. Maulana, M. Orisa, and H. Zulfia Zahro’, “Klasifikasi Data Produk Mebel Aneka Jaya Menggunakan Metode K-Nearest Neighbor Berbasis Web,†JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 460–466, 2021, doi: 10.36040/jati.v5i2.3782.
M. Wibowo and R. Ramadhani, “Perbandingan Metode Klasifikasi Data Mining Untuk Rekomendasi Tanaman Pangan,†J. Media Inform. Budidarma, vol. 5, no. 3, p. 913, 2021, doi: 10.30865/mib.v5i3.3086.
Mustika et al., Data Mining dan Aplikasinya. Bandung: Penerbit Widina, 2021.
I. Taib and M. Nanja, “Prediksi Produksi Tanaman Pangan di Provinsi Gorontalo Menggunakan Metode K-Nearest Neighbor,†cosPhi, vol. 2, no. 1, pp. 17–20, 2018, [Online]. Available: https://www.cosphijournal.unisan.ac.id/index.php/cosphihome/article/view/73.
W. T. Panjaitan, E. Utami, and H. Al Fatta, “Prediksi Panen Padi Menggunakan Algoritma K-Nearest Neigbour,†Pros. SNATIF, pp. 621–628, 2018, [Online]. Available: https://conference.umk.ac.id/index.php/snatif/article/view/99.
A. Pungky, “Penerapan Metode K-Nn Untuk Memprediksi Hasil Pertanian Di Kabupaten Malang,†JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 1, pp. 235–242, 2019.
K. C. Pelangi, “Prediksi Produksi Tanaman Pangan Di Provinsi Gorontalo Menggunakan Metode K-Nn (K- Nearest Neighbor),†Simtek J. Sist. Inf. dan Tek. Komput., vol. 6, no. 2, pp. 173–177, 2021, doi: 10.51876/simtek.v6i2.113.
A. Wanto et al., Data Mining Algoritma dan Implementasi. Medan: Yayasan Kita Menulis, 2020.
A. Yudhana, S. Sunardi, and A. J. S. Hartanta, “Algoritma K-Nn Dengan Euclidean Distance Untuk Prediksi Hasil Penggergajian Kayu Sengon,†Transmisi, vol. 22, no. 4, pp. 123–129, 2020, doi: 10.14710/transmisi.22.4.123-129.
M. Lutfi, “Implementasi Metode K-Nearest Neighbor dan Bagging Untuk Klasifikasi Mutu Produksi Jagung,†Agromix, vol. 10, no. 2, pp. 130–137, 2019, doi: 10.35891/agx.v10i2.1636.
D. N. Aini, B. Oktavianti, M. J. Husain, D. A. Sabillah, S. T. Rizaldi, and M. Mustakim, “Seleksi Fitur untuk Prediksi Hasil Produksi Agrikultur pada Algoritma K-Nearest Neighbor (KNN),†J. Sist. Komput. dan Inform., vol. 4, no. 1, p. 140, 2022, doi: 10.30865/json.v4i1.4813.
E. P. W. Mandala, E. Rianti, and S. Defit, “Classification of Customer Loans Using Hybrid Data Mining,†JUITA J. Inform., vol. 10, no. 1, pp. 45–52, 2022, doi: 10.30595/juita.v10i1.12521.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).