Penerapan Algoritma C4.5 Untuk Klasifikasi Tren Pelanggaran Kendaraan Angkutan Barang dengan Metode CRISP-DM

Authors

  • Novie Hari Purnomo STMIK LIKMI, Bandung
  • Bayu Pamungkas STMIK LIKMI, Bandung
  • Christina Juliane STMIK LIKMI, Bandung

DOI:

https://doi.org/10.30865/mib.v7i1.5247

Keywords:

Classification, Decision Tree, CRISP-DM, Data Mining, Over Dimension Over Loading, C4.5 Algorithm

Abstract

Road damage due to ODOL (Over Dimension Over Loading) increases the road maintenance budget significantly, namely an average of IDR 43.45 trillion per year. In addition, many accidents involving ODOL trucks or overloading and dimensions have occurred. The level of violations caused by ODOL vehicles is still high, so technology is needed that is able to manage data and serve as a reference to find out the hidden approaches in the data set, as well as analyze the grouping between data and attributes to facilitate decision making and policy making. This study applies the CRISP-DM methodology using a decision tree model with the C4.5 algorithm. The purpose of this research is to classify trends in freight transport violations based on violation data in the UPPKB. The research data is primary data obtained from the Directorate of Road Transportation Infrastructure of the Ministry of Transportation through the online weighbridge system (JTO). The expected result of this research is to be able to find out the pattern of classification trends for freight vehicle disturbances based on the results of the C.45 algorithm decision tree, so that the research results can be used as a reference in making decisions and making policies. The results of this study indicate that the accuracy performance in data mining tests for the classification of trends in freight vehicle disturbances with 10 fold cross validation linear sampling produces an accuracy of 86.31% +/- 1.23% (micro average: 86.31%), shuffled sampling produces an accuracy of 86.34% +/ - 0.67% (micro average: 86.34%) and stratified sampling produces an accuracy of 86.34% +/- 0.67% (micro average: 86.34%).

References

Rezky Yostisa, “Kajian Pengendalian Over Dimensi Over Loading,†Badan Kebijakan Transportsi Kementerian Perhubungan, Apr 27, 2021. https://baketrans.dephub.go.id/berita/kajian-pengendalian-over-dimensi-over-loading (diakses Des 11, 2022).

Nuraini Wulandari, “Menuju Indonesia Bebas Odol,†Badan Kebijakan Transportasi Kementerian Perhubungan, Agu 18, 2022. https://baketrans.dephub.go.id/berita/menuju-indonesia-bebas-odol (diakses Okt 30, 2022).

L. Antono, “Implementasi Kebijakan Odol Dalam Upaya Meningkatkan Sistem Pengawasan Dan Pengendalian Muatan Angkutan Barang,†JURNAL ILMIAH MULTI DISIPLIN INDONESIA, vol. 1, hlm. 1720–1729, 2022.

Republik Indonesia, “Undang-Undang Nomor 22 Tahun 2009.†https://www.dpr.go.id/dokjdih/document/uu/UU_2009_22.pdf (diakses Okt 30, 2022).

B. Poernomo, R. Dewi, dan I. Sari, “Penerapan Data Mining Untuk Prakiraan Cuaca Di Kota Malang Menggunakan Algoritma Iterative Dichotomiser Tree (ID3),†JOUTICLA, vol. 3, no. 2, hlm. 101–108, 2017.

H. Hafizan dan A. N. Putri, “Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun,†Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 1, no. 2, hlm. 68–72, 2020.

M. Muhamad, A. P. Windarto, dan S. Suhada, “Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out,†KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, Des 2019, doi: 10.30865/komik.v3i1.1688.

M. A. Hasanah, S. Soim, dan A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,†Journal of Applied Informatics and Computing (JAIC), vol. 5, no. 2, hlm. 103–108, 2021.

S. Huber, H. Wiemer, D. Schneider, dan S. Ihlenfeldt, “DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model,†dalam Procedia CIRP, 2019, vol. 79, hlm. 403–408. doi: 10.1016/j.procir.2019.02.106.

Ida Kade Sukesa, “CRISP DM Sebagai Salah Satu Standard untuk Menghasilkan Data Driven Decision Making yang Berkualitas,†Kementerian Keuangan Republik Indonesia, Jun 22, 2022. https://www.djkn.kemenkeu.go.id/artikel/baca/15134/CRISP-DM-Sebagai-Salah-Satu-Standard-untuk-Menghasilkan-Data-Driven-Decision-Making-yang-Berkualitas.html (diakses Okt 28, 2022).

D. A. C, D. A. Baskoro, L. Ambarwati, dan I. W. S. Wicaksana, Belajar Data Mining dengan RapidMiner. Jakarta, 2013.

M. Jufri, “Data Mining Algorithm C4.5 Classification Determination Credit Eligibility For Jaya Bersama Cooperatives (Korjabe),†JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 8, no. 1, hlm. 85–94, Des 2021, doi: 10.33330/jurteksi.v8i1.1228.

G. L. Pritalia, “Penerapan Algoritma C4.5 untuk Penentuan Ketersediaan Barang E-commerce,†2018.

D. R. S. P, A. P. Windarto, D. Hartama, dan I. S. Damanik, “Penerapan Klasifikasi C4.5 Dalam Meningkatkan Sistem Pembelajaran Mahasiswa,†KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, hlm. 593–597, Des 2019, doi: 10.30865/komik.v3i1.1665.

P. Nuraini, J. Tata Hardinata, Y. Pranayama Purba Program Studi Sistem Informasi, S. A. Tunas Bangsa Jalan Jendral Sudirman Blok, dan S. Utara, “Penerapan Algoritma C4.5 Untuk Klasifikasi Pola Kepuasan Pelayanan E-Ktp Di Kantor Camat Pematang Bandar,†Media Online), vol. 3, no. 2, hlm. 138–144, 2022, [Daring]. Available: https://djournals.com/resolusi

G. Taufik dan D. Jatmika, “Penerapan Algoritma C4.5 Untuk Klasifikasi Keberhasilan Pengiriman Barang,†vol. 6, no. 1, hlm. 12–26, 2021.

K. Suhada, A. Elanda, dan A. Aziz, “Klasifikasi Predikat Tingkat Kelulusan Mahasiswa Program Studi Teknik Informatika dengan Menggunakan Algoritma C4.5 (Studi Kasus: STMIK Rosma Karawang),†Jurnal Manajemen dan Sistem Informasi, vol. 01, no. 02, hlm. 14–27, 2021.

Antoni Wibowo, “10 Fold-Cross Validation,†BINUS Higher Education, Nov 24, 2017. https://mti.binus.ac.id/2017/11/24/10-fold-cross-validation/ (diakses Nov 20, 2022).

A. Nugroho dan Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, hlm. 504–510, Jun 2021, doi: 10.29207/resti.v5i3.3067.

J. Jaya Purnama dan S. Rahayu, “Klasifikasi Konsumsi Energi Industri Baja Menggunakan Teknik Data Mining,†JURNAL TEKNOINFO, vol. 16, no. 2, hlm. 395–407, 2022.

A. M. Khalimi, “Tutorial RapidMiner Teknik Sampling Data,†Pengalaman Edukasi, 2020. https://www.pengalaman-edukasi.com/2020/04/cara-sampling-data-menggunakan.html (diakses Nov 20, 2022).

Downloads

Published

2023-01-28