Perbandingan Metode Klasifikasi Untuk Deteksi Stress Pada Mahasiswa di Perguruan Tinggi

Authors

  • Merlinda Wibowo Institut Teknologi Telkom Purwokerto, Purwokerto
  • Muh. Rizieq Fazlulrahman Djafar Institut Teknologi Telkom Purwokerto, Purwokerto

DOI:

https://doi.org/10.30865/mib.v7i1.5182

Keywords:

Classification, Stress Detection, Naïve Bayes, Decision Tree, Support Vector Machine, SVM, Neural Network, Random Tree, Random Forest, dan K-Nearest Neighbor, KNN, Mining Data, Machine Learning, Deep Learning

Abstract

The outbreak of the COVID-19 pandemic is increasingly affecting the high level of stress in humans. Stress due to this pandemic has also occurred, especially for students. This stress is caused by students spending too much time studying online. Using student data can act as a tool to identify student stress by processing it through various machine-learning methods. This method can extract information and find patterns and information from the data. Classification techniques are used as data groupings based on mapping data into sample data. This study used several classification methods: Naïve Bayes, Decision Tree, Support Vector Machine (SVM), Neural Network, Random Tree, Random Forest, and K Nearest Neighbor (KNN). These methods were successfully compared to determine which is the best for detecting stress precisely and accurately based on the classification performance results of each method. Random Tree and Decision tree were chosen as the best methods for the results of this performance comparison with an 80:20 split reaching up to 100%.

Author Biographies

Merlinda Wibowo, Institut Teknologi Telkom Purwokerto, Purwokerto

Fakultas Informatika, Program Studi Informatika, Institut Teknologi Telkom Purwokerto, Jawa Tengah, Indonesia

Muh. Rizieq Fazlulrahman Djafar, Institut Teknologi Telkom Purwokerto, Purwokerto

Fakultas Informatika, Program Studi Informatika, Institut Teknologi Telkom Purwokerto, Jawa Tengah, Indonesia

References

D. B. O’Connor, J. F. Thayer, and K. Vedhara, “Stress and Health: A Review of Psychobiological Processes,†Annu. Rev. Psychol., vol. 72, pp. 663–688, 2021.

V. A. Canady, “APA survey: Majority of Americans reporting prolonged stress,†Ment. Heal. Wkly., vol. 31, no. 6, pp. 6–6, 2021.

B. Lazarevic and D. Bentz, “Student Perception of Stress in Online and Face-to-Face Learning: The Exploration of Stress Determinants,†Am. J. Distance Educ., vol. 35, no. 1, pp. 2–15, 2021.

P. Harjule, A. Rahman, and B. Agarwal, “A cross-sectional study of anxiety, stress, perception and mental health towards online learning of school children in India during COVID-19,†J. Interdiscip. Math., vol. 24, no. 2, pp. 411–424, 2021.

P. Bobade and M. Vani, “Stress Detection with Machine Learning and Deep Learning using Multimodal Physiological Data,†Proc. 2nd Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2020, pp. 51–57, 2020.

V. Montesinos, F. Dell’Agnola, A. Arza, A. Aminifar, and D. Atienza, “Multi-Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices,†Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 2196–2201, 2019.

M. Wibowo and R. Ramadhani, “Perbandingan Metode Klasifikasi Data Mining Untuk Rekomendasi Tanaman Pangan,†J. Media Inform. Budidarma, vol. 5, no. 3, p. 913, 2021.

M. Wibowo and S. Sulaiman, “Machine Learning in Data Lake for Combining Data Silos,†pp. 294–306, 2017.

F. D. Adhinata, D. P. Rakhmadani, M. Wibowo, and A. Jayadi, “A Deep Learning Using DenseNet201 to Detect Masked or Non-masked Face,†JUITA J. Inform., vol. 9, no. 1, p. 115, 2021.

T. Setiadi, F. Noviyanto, H. Hardianto, A. Tarmuji, A. Fadlil, and M. Wibowo, “Implementation Of Naïve Bayes Method In Food Crops Planting Recommendation,†Int. J. Sci. Technol. Res., vol. 9, no. 02, pp. 4750–4755, 2020.

M. Ustuner, M. T. Esetlili, F. B. Sanli, S. Abdikan, and Y. Kurucu, “Comparison of crop classification methods for the sustainable agriculture management,†J. Environ. Prot. Ecol., vol. 17, no. 2, pp. 648–655, 2016.

M. Wibowo, S. Sulaiman, and S. M. Shamsuddin, “Comparison of Prediction Methods for Air Pollution Data in Malaysia and Singapore,†Int. J. Innov. Comput., vol. 8, no. 3, pp. 65–71, 2018.

L. Jiang, C. Li, S. Wang, and L. Zhang, “Deep feature weighting for naive Bayes and its application to text classification,†Eng. Appl. Artif. Intell., vol. 52, pp. 26–39, 2016.

H. Zhang, Z.-X. Cao, M. Li, Y.-Z. Li, and C. Peng, “Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals,†Food Chem. Toxicol., vol. 97, pp. 141–149, 2016.

S. T. Rizaldi and M. Mustakim, “Perbandingan Teknik Pembagian Data untuk Klasifikasi Sarana Akses Air pada Algoritma K- Nearest Neighbor dan Naïve Bayes Classifier,†Semin. Nas. Teknol. Informasi, Komun. dan Ind. 12, pp. 130–137, 2020.

Z. Zainudin, S. Hasan, S. M. Shamsuddin, and S. Argawal, “Stress Detection using Machine Learning and Deep Learning,†J. Phys. Conf. Ser., vol. 1997, no. 1, 2021.

M. Wibowo, F. Noviyanto, S. Sulaiman, and S. M. Shamsuddin, “Machine Learning Technique For Enhancing Classification Performance In Data Summarization Using Rough Set And Genetic Algorithm,†Int. J. Sci. Technol. Res., vol. 8, no. 10, pp. 1108–1119, 2019.

M. Wibowo, S. Sulaiman, S. Mariyam, and H. Hashim, “Mobile Analytics Database Summarization Using Rough Set,†Int. J. Innov. Comput., vol. 7, no. 2, pp. 6–12, 2017.

Downloads

Published

2023-01-28