Penerapan K-Means Untuk Clustering Kondisi Gizi Balita Pada Posyandu

Authors

  • Candra Adi Rahmat Universitas Dinamika Bangsa, Jambi
  • Hilda Permatasari Universitas Dinamika Bangsa, Jambi
  • Errissya Rasywir Universitas Dinamika Bangsa, Jambi
  • Yovi Pratama Universitas Dinamika Bangsa, Jambi

DOI:

https://doi.org/10.30865/mib.v7i1.5142

Keywords:

Implementation, K-Means, Clustering, Toddler Nutrition, WEKA, Posyandu

Abstract

Malnutrition in children is a major public health problem in developing countries, including Indonesia. National data show that 36.8% of children under five years of age (toddlers) are stunted (short and very short, measured by height for age). To be able to know the nutritional condition of the toddler, can use analysis and a calculation method. In this study, the authors utilize an analysis and calculation of data, namely data mining. One of the techniques in data mining is clustering. K-Means Clustering is one of the algorithms in the Clustering technique in data mining. In this study the authors used as many as 20 data on toddlers. From the 20 data on toddlers, the authors determined the cluster center randomly as much as 3 data and resulted that, 4 toddlers were malnourished, 7 toddlers were well nourished, and 9 toddlers were obese.

Author Biography

Yovi Pratama, Universitas Dinamika Bangsa, Jambi

Google Scholar ID: e18XecEAAAAJ
SINTA ID:6096920
SCOPUS ID: 57206722883

References

D. N. Iswarawanti and S. T. R. C. for C. Nutrition, “Kader Posyandu :,†J. Manaj. Pelayanan Kesehat., vol. 13, no. 04, pp. 169–173, 2010.

L. D. Anggraeni, Y. R. Toby, and S. Rasmada, “Analisis Asupan Zat Gizi Terhadap Status Gizi Balita,†Faletehan Heal. J., vol. 8, no. 02, pp. 92–101, 2021, doi: 10.33746/fhj.v8i02.191.

R. A. D. Sartika, “Analisis Pemanfaatan Program Pelayanan Kesehatan Status Gizi Balita,†J. Kesehat. Masy. Nas., vol. 5, no. 2, pp. 1–8, 2010.

E. Manurung and P. S. Hasugian, “Data Mining Tingkat Pesanan Inventaris Kantor Menggunakan Algoritma Apriori pada Kepolisian Daerah Sumatera Utara,†J. Inform. Pelita Nusant., vol. 4, no. 2, pp. 8–13, 2019.

D. W. Sitohang and A. Rikki, “Implementasi Algoritma K- Means Clustering untuk Mengelompokkan Data Gizi Balita pada Kecamatan Garoga Tapanuli Utara,†KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komputer), vol. 02, pp. 80–92, 2019, doi: 10.54367/kakifikom.v1i2.642.

H. Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, “Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani,†J. Paradig. UBSI, vol. 22, no. 2, pp. 132–138, 2020.

Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, “Sistem Pakar Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani Berbasis Web,†J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1225–1234, 2020, doi: 10.30865/mib.v4i4.2521.

M. R. Borroek, E. Rasywir, Y. Pratama, Fachruddin, and M. Istoningtyas, “Analysis on Knowledge Layer Application for Knowledge Based System,†in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 177–182, doi: 10.1109/ICECOS.2018.8605262.

Fachruddin, Saparudin, E. Rasywir, and Y. Pratama, “Network and layer experiment using convolutional neural network for content based image retrieval work,†Telkomnika (Telecommunication Comput. Electron. Control., vol. 20, no. 1, pp. 118–128, 2022, doi: 10.12928/TELKOMNIKA.v20i1.19759.

E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network ( CNN ),†J. Paradig. UBSI, vol. 22, no. 2, pp. 117–123, 2020.

E. Rasywir, R. Sinaga, and Y. Pratama, “Evaluasi Pembangunan Sistem Pakar Penyakit Tanaman Sawit dengan Metode Deep Neural Network ( DNN ),†vol. 4, pp. 1206–1215, 2020, doi: 10.30865/mib.v4i4.2518.

D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.

F. Nasari and S. Darma, “Seminar Nasional Teknologi Informasi dan Multimedia 2015 PENERAPAN K-MEANS CLUSTERING PADA DATA PENERIMAAN MAHASISWA BARU (STUDI KASUS : UNIVERSITAS POTENSI UTAMA),†pp. 6–8, 2015.

V. Syaputri, D. Hartama, F. Anggraini, M. Safii, and R. Dewi, “PENERAPAN ALGORITMA K-MEANS UNTUK MENENTUKAN STATUS GIZI BALITA ( STUDI KASUS : PUSKESMAS KECAMATAN JAWA MARAJA BAH JAMBI ),†vol. 6, no. 1, pp. 94–102, 2022.

M. Efendi, “Penerapan Metode K-Means Clustering Pada Sistem Pendukung Keputusan Penentuan Status Gizi Batita,†JATI (Jurnal Mhs. Tek. Inform., vol. 2, no. 2, pp. 184–189, 2018.

J. Informatika et al., “Implementasi Data Mining Untuk Menentukan Persediaan Stok Obat Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ),†vol. 1, no. April, pp. 155–160, 2022.

P. Alkhairi and A. P. Windarto, “Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara,†Semin. Nas. Teknol. Komput. Sains, pp. 762–767, 2019.

Downloads

Published

2023-01-28