Penerapan Data Mining Dalam Analisis Penilaian Kinerja Pegawai Menerapkan Metode K-Means

Authors

  • Supriadi Sahibu Universitas Handayani Makassar, Makassar
  • Rismawati Bambang Universitas Handayani Makassar, Makassar
  • Imran Taufik Universitas Handayani Makassar, Makassar
  • Agusriandi Agusriandi Universitas Sulawesi Barat, Majene

DOI:

https://doi.org/10.30865/mib.v7i1.5100

Keywords:

Employee Performance, Employee Performance Goals, K-Means Clustering

Abstract

The organization, including local government agencies, in the face of increasingly fierce competition, must improving employee performance if they want to exist. As an effort to improve employee performance, various strategies were needed, one of which is clustering analysis of employee performance. Clustering analysis is very important in an effort to gain knowledge from employee activities quickly compared to manual methods. Therefore, in this study an analysis of employee performance was carried out based on the Employee Performance Targets (SKP), which was divided into 2, namely the 2020 SKP Printout and the 2021 SKP questionnaire. From the results of the K-Means Cluster it produced a more convincing questionnaire SKP cluster because there was a distribution that was more dominated by employee performance that good and the outliers are of little value, and the difference in the Sum of Square values of the SKP printout and questionnaire clusters that not too far away, only 21% so that the characteristics of the cluster results are almost identical. Cluster results described the real conditions of employee performance.

References

Badan Kepegawaian Nasional, “Baru 35 Instansi Pemerintah Berkategori Baik dalam Penerapan Menajemen Kinerja PNS,†2021. https://www.bkn.go.id/berita/baru-35-instansi-pemerintah-berkategori-baik-dalam-penerapan-menajemen-kinerja-pns

Agusriandi, I. S. Sitanggang, and S. H. Wijaya, “Student Performance Based on Activity Log on Social Network and e-Learning,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2276–2281, 2020, doi: 10.18517/ijaseit.10.6.8753.

S. Man, “Analisis Peranan Pendidikan Dan Pelatihan Dalam Peningkatan Kinerja Pegawai,†Akuntanika, vol. 6, no. 1, pp. 38–45, 2020.

L. Theresia, A. H. Lahuddin, G. Ranti, and R. Bangun, “The influence of culture, job satisfaction and motivation on the performance lecturer/employees,†in International Conference on Industrial Engineering and Operations Management. Bandung, 2018, pp. 2541–2552.

A. D. Andriani et al., Manajemen sumber daya manusia, vol. 1. TOHAR MEDIA, 2022.

A. Handaru and U. Mardiyati, “Jurnal Dinamika Manajemen,†Jdm, vol. 5, no. 2, pp. 171–182, 2014.

E. H. Yossy, “Analisa Kesenjangan Sistem Sasaran Kinerja Pegawai Pusat Data dan Informasi Divisi Perencanaan dan Pembangunan Kementerian Ketenagakerjaan Republik Indonesia,†Insa. Pembang. Sist. Inf. dan Komput., vol. 6, no. 1, 2018.

N. Yuningsih, “Penerapan Manajemen Kinerja Pegawai Di Instansi Pemerintah,†J. Pengemb. Wiraswasta, vol. 19, no. 2, pp. 141–154, 2018.

B. A. Rahadian, D. Kurnianingtyas, D. P. Mahardika, T. N. Maghfira, and I. Cholissodin, “Analisis Judul Majalah Kawanku Menggunakan Clustering K-Means Dengan Konsep Simulasi Big Data Pada Hadoop Multi Node Cluster,†J. Teknol. Inf. dan Ilmu Komput. p-ISSN, vol. 2355, p. 7699, 2017.

I. Z. Adhari, Optimalisasi Kinerja Karyawan Menggunakan Pendekatan Knowledge Management & Motivasi Kerja, vol. 1. CV. Penerbit Qiara Media, 2021.

A. Purwanto, J. T. Purba, I. Bernarto, and R. Sijabat, “Pengaruh Servant, Digital dan Green leadership Terhadap Kinerja Industri Manufaktur Melalui Mediasi Komitmen Organisasi,†J. Ris. Inspirasi Manaj. dan Kewirausahaan, vol. 5, no. 1, pp. 1–13, 2021.

R. Isdius, “ANALISIS KEBIJAKAN PENSIUN DINI PNS MELALUI UJI KOMPETENSI DALAM RANGKA MENINGKATKAN KUALITAS BIROKRASI PEMERINTAHAN,†J. Good Gov., vol. 15, no. 1, 2019.

A. Agusriandi, E. Elihami, I. Syarif, and I. S. Samad, “Model Analisis Aktivitas Tutor Dalam Learning Management System Berdasarkan Data Log Menggunakan K-Means Dan Deteksi Outlier,†J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, pp. 709–716, 2022.

I. S. Nugraha, K. I. Satoto, and K. T. Martono, “Pemanfaatan Augmented Reality untuk Pembelajaran Pengenalan Alat Musik Piano,†J. Teknol. dan Sist. Komput., vol. 2, no. 1, pp. 62–70, 2014, doi: 10.14710/jtsiskom.2.1.2014.62-70.

N. Taufiq and S. Mariyah, “Pendekatan Model Machine Learning dalam Pemeringkatan Status Sosial Ekonomi Rumah Tangga di Indonesia,†in Seminar Nasional Official Statistics, 2021, vol. 2021, no. 1, pp. 1044–1053.

B. Santoso and A. I. S. Azis, Machine Learning & Reasoning Fuzzy Logic Algoritma, Manual, Matlab, & Rapid Miner. Deepublish, 2020.

A. Imron, “Analisis sentimen terhadap tempat wisata di kabupaten Rembang menggunakan metode Naive Bayes Classifier,†2019.

T. Alfina, B. Santosa, and A. R. Barakbah, “Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabungan Keduanya dalam Cluster Data (Studi Kasus: Problem Kerja Praktek Teknik Industri ITS),†J. Tek. ITS, vol. 1, no. 1, pp. A521–A525, 2012.

A. Van den Beemt, J. Buijs, and W. Van der Aalst, “Analysing Structured Learning Behaviour in Massive Open Online Courses (MOOCs): An Approach Based on Process Mining and Clustering,†Int. Rev. Res. Open Distrib. Learn., vol. 19, no. 5, pp. 38–60, 2018, doi: 10.19173/irrodl.v19i5.3748.

W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on mapreduce,†in IEEE International Conference on Cloud Computing, 2009, pp. 674–679.

K. A. Seputra and I. N. S. W. Wijaya, “Penerapan Algoritma Pillar Untuk Inisialisasi Titik Pusat K-Means Klaster Dinamis,†J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, 2020.

Downloads

Published

2023-01-28