Pengelompokan Hasil Survei MBKM Menggunakan K-Mean dan K-Medoids Clustering
DOI:
https://doi.org/10.30865/mib.v7i1.5003Keywords:
MBKM, K-Mean, K-Medoids, Clustering, Machine Learning, Davies Bouldin Index (DBI)Abstract
In order to categorize data from the findings of the MBKM survey using machine learning, the goal of this research is to determine how well the implementation of MBKM has been comprehended by Education staff, lecturers, and students at the university level. Artificial intelligence, which is frequently employed to address a variety of issues, includes machine learning. K-Mean and K-Medoids clustering algorithm models were used to group the data for suggestions on how to apply MBKM at Bhayangkara Jakarta Raya University. This study uses databases and machine learning approaches to categorize MBKM survey data at the level of the relevant study program. In order to examine the machine in accordance with the learning algorithm, the K-Mean and K-Medoids clustering algorithms will be utilized. This research will train a machine or system using filtered data that can predict the outcomes of the MBKM survey, which was constructed using machine learning. The study's findings come from the application of MBKM into two groups, with cluster 1 showing a high degree of comprehension and cluster 2 showing a low level of understanding, as produced by K-Mean. In the meantime, K-Medoids created cluster 2 for high comprehension of MBKM and cluster 1 for low understanding of MBKM implementation. The results of the comparison evaluation of clustering between K-Mean and K-Medoids obtained cluster evaluation values using the Davies Bouldin Index by conducting trials starting from K=2, K=3, K=4 and K=5 showing lower K-Mean values compared to K-Medoids, so that K-Mean is recommended as a clustering algorithm for grouping the results of the MBKM survey implementation in Higher Education.
References
T. Rachman, “IMPLEMENTASI PROGRAM MBKM BERBASIS IKU-7 (PRODI PENDIDIKAN BAHASA DAN SASTRA INDONESIA UMI,†Angew. Chemie Int. Ed. 6(11), 951–952., vol. 6, no. 2, pp. 10–27, 2018.
M. R. Baharuddin, “Adaptasi Kurikulum Merdeka Belajar Kampus Merdeka (Fokus: Model MBKM Program Studi),†J. Stud. Guru dan Pembelajaran, vol. 4, no. 1, pp. 195–205, 2021, [Online]. Available: https://www.e-journal.my.id/jsgp/article/view/591.
A. Antoni, N. Ritonga, H. Ahmad, and ..., “Implementasi Merdeka Belajar Kampus Merdeka (Mbkm) Pada Mahasiswa Universitas Aufa Royhan Padangsidimpuan,†J. Educ. …, vol. 10, no. 1, pp. 391–394, 2022, [Online]. Available: http://journal.ipts.ac.id/index.php/ED/article/view/3428.
A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,†IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.
F. D. Telaumbanua, P. Hulu, T. Z. Nadeak, R. R. Lumbantong, and A. Dharma, “Penggunaan Machine Learning,†J. Teknol. dan Ilmu Komput., vol. 3, no. 1, pp. 57–64, 2019.
A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 229–240, 2021, doi: 10.29100/jipi.v6i2.2008.
A. Wibowo, Moh Makruf, Inge Virdyna, and Farah Chikita Venna, “Penentuan Klaster Koridor TransJakarta dengan Metode Majority Voting pada Algoritma Data Mining,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 565–575, 2021, doi: 10.29207/resti.v5i3.3041.
Qomariyah and M. U. Siregar, “Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering,†JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 2, pp. 91–99, 2022, doi: 10.14421/jiska.2022.7.2.91-99.
D. A. Alodia, A. P. Fialine, D. Endriani, and E. Widodo, “Implementasi Metode K-Medoids Clustering untuk Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Pendidikan,†Sepren, vol. 2, no. 2, pp. 1–13, 2021.
S. Febriyanti and J. Nugraha, “Application of K-Medoids Clustering to Increase the 2020 Family Planning Program in Sleman Regency,†Enthusiastic Int. J. Appl. Stat. Data Sci., vol. 2, no. 1, pp. 10–18, 2022, doi: 10.20885/enthusiastic.vol2.iss1.art2.
R. Annisa, D. Rosiyadi, and D. Riana, “Improved point center algorithm for k-means clustering to increase software defect prediction,†Int. J. Adv. Intell. Informatics, vol. 6, no. 3, pp. 328–339, 2020, doi: 10.26555/ijain.v6i3.484.
H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,†J. Edukasi dan Penelit. Inform., vol. 5, no. 1, p. 62, 2019, doi: 10.26418/jp.v5i1.29611.
M. Z. Rodriguez et al., Clustering algorithms: A comparative approach, vol. 14, no. 1. 2019.
N. Nidheesh, K. A. Abdul Nazeer, and P. M. Ameer, “An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data,†Comput. Biol. Med., vol. 91, pp. 213–221, 2017, doi: 10.1016/j.compbiomed.2017.10.014.
Han J;Kamber M; Jian P, Data Mining : Concepts and techniques. USA : Elsevier Inc, 2012.
B. Liu, “Sentiment analysis and subjectivity,†Handb. Nat. Lang. Process. Second Ed., no. January 2010, pp. 627–666, 2010.
E. Zhu, Y. Zhang, P. Wen, and F. Liu, “Fast and stable clustering analysis based on Grid-mapping K-means algorithm and new clustering validity index,†Neurocomputing, vol. 363, pp. 149–170, 2019, doi: 10.1016/j.neucom.2019.07.048.
F. A. Syam, “Implementasi Metode Klastering K-Means untuk Mengelompokan Hasil Evaluasi Mahasiswa,†J. Ilmu Komput. dan Bisnis, vol. 8, no. 1, pp. 1857–1864, 2017, doi: 10.47927/jikb.v8i1.94.
J. Han and M. Kamber, Data Mining: Concept and Techniques. Waltham: Morgan Kauffman Publisher, 2006.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).