Penerapan Algoritma C5.0 Data Mining Untuk Mengetahui Pola Kepuasan Mahasiswa Terhadap Pelayanan Akademik
DOI:
https://doi.org/10.30865/mib.v6i4.4961Keywords:
Data Mining, Satisfaction, Student, Pattern, C5.0 AlgorithmAbstract
Students are one of the important aspects in improving the quality of higher education. One of the services provided to students is academic services. Knowing the satisfaction of academic services to students for tertiary institutions is quite important. The process carried out to determine student satisfaction has several obstacles, such as the use of a special process to determine student satisfaction. Knowing the pattern of student satisfaction with academic services must be known. To find out the pattern of student satisfaction, it can be done by processing data based on the questionnaire data that has been done previously. Data mining is a process of processing data stored in data warehouses. Data mining performs large data processing with the aim of obtaining valuable information stored in the data set. The C5.0 algorithm is one of the algorithms in data mining that can help solve problems in data processing. The C5.0 algorithm gets results based on the decision tree, the results from the decision tree will later become a new rule or role. The results obtained from the research process are a rule or pattern that can be used to determine the attributes or services that cause dissatisfaction with academic services to students.References
D. A. R. Saragih, M. Safii, and D. Suhendro, “Penerapan Data Mining Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi di Program Studi Sistem Informasi,†J. Inf. Syst. Res., vol. 2, no. 2, pp. 173–177, 2021.
N. T. Ujianto and N. A. Ramdhan, “IMPLEMENTASI DATA MINING C4.5 DALAM MENGUKUR TINGKAT KEPUASAN MAHASISWA TERHADAP PELAYANAN AKADEMIK,†J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 01, pp. 105–111, 2022.
A. Nurzahputra, M. A. Muslim, and M. Khusniati, “Penerapan Algoritma K-Means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa,†Techno.Com, vol. 16, no. 1, pp. 17–24, 2017, doi: 10.33633/tc.v16i1.1284.
A. Yuliana and D. B. Pratomo, “Algoritma Decision Tree (C4.5) Untuk Memprediksi Kepuasan Mahasiswa Terhadap Kinerja Dosen Politeknik Tedc Bandung,†in Seminar Nasional Inovasi Teknologi 2017, 2017, pp. 377–384.
A. Lestari, E. Mariati, and W. Widiatry, “Model Klasifikasi Kepuasan Mahasiswa Teknik Terhadap Sarana Pembelajaran Menggunakan Data Mining,†J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 14, no. 2, pp. 112–118, 2020, doi: 10.47111/jti.v14i2.1222.
R. R. Putra and C. Wadisman, “IMPLEMENTASI DATA MINING PEMILIHAN PELANGGAN POTENSIAL MENGGUNAKAN ALGORITMA K-MEANS,†Intecoms J. Inf. Technol. Comput. Sci., vol. 11, no. 1, pp. 1–5, 2018, [Online]. Available: http://link.springer.com/10.1007/978-3-319-59379-1%0Ahttp://dx.doi.org/10.1016/B978-0-12-420070-8.00002-7%0Ahttp://dx.doi.org/10.1016/j.ab.2015.03.024%0Ahttps://doi.org/10.1080/07352689.2018.1441103%0Ahttp://www.chile.bmw-motorrad.cl/sync/showroom/lam/es/.
I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,†J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.
A. Handayanto, K. Latifa, N. D. Saputro, and R. R. Waliansyah, “Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi,†JUITA J. Inform., vol. 7, no. 2, 2019, doi: 10.30595/juita.v7i2.4378.
A. Putra, Z. A. Matondang, N. Sitompul, I. Pendahuluan, and A. Prediksi, “Implementasi Algoritma Rough Set Dalam Memprediksi Kecerdasan Anak,†J. Pelita Inform., vol. 7, no. 2, pp. 149–156, 2018.
V. N. Budiyasari, P. Studi, T. Informatika, F. Teknik, U. Nusantara, and P. Kediri, “Implementasi Data Mining Pada Penjualan kacamata Dengan Menggunakan Algoritma Apriori,†Indones. J. Comput. Inf. Technol., vol. 2, no. 2, pp. 31–39, 2017.
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†Eeccis, vol. 7, no. 1, pp. 59–64, 2013, doi: 10.1038/hdy.2009.180.
H. Leidiyana, “Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor,†J. Penelit. Ilmu Komputer, Syst. Embed. Log., vol. 1, no. 1, pp. 65–76, 2013.
D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,†Media Inform. Budidarma, vol. 4, no. 4, pp. 994–1006, 2020.
D. P. Utomo and S. Aripin, “Penerapan Algoritma C5. 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,†2021.
C. Hutabarat, “Penerapan Data Mining Untuk Memprediksi Permintaan Produk Kartu Perdana Internet Menggunakan Algoritma C5.0 (Studi Kasus: Vidha Ponsel),†Pelita Inform., vol. 6, no. April, pp. 419–424, 2018.
D. J. Purba, M. R. Lubis, and Z. A. Siregar, “Analisis Kepuasan Pelanggan Menggunakan Algoritma C5.0,†J. Informatics Manag. Inf. Technol., vol. 2, no. 2, pp. 115–121, 2022, doi: 10.54367/jtiust.v7i1.1983.
R. P. Padang, “Implementasi Data Mining Algoritma C5 . 0 Dalam Memprediksi Penerimaan Cleaning Service ( Cs ) Pada Pt Iss Indonesia Medan,†Maj. Ilm. INTI, vol. 6, no. 3, pp. 304–309, 2019.
U. R. Amanda and D. P. Utomo, “Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 5, no. 1, pp. 86–93, 2021, doi: 10.30865/komik.v5i1.3653.
D. P. Indini, S. R. Siburian, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,†in Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi, 2022, pp. 325–331.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).