Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) pada Kenaikan Harga Bahan Bakar Minyak (BBM)
DOI:
https://doi.org/10.30865/mib.v6i4.4958Keywords:
BBM, BSU, Classification, Naive Bayes, Sentiment.Abstract
Fuel Oil (BBM) is a very important commodity for the people of Indonesia. The increase in fuel prices will have an impact on economic instability in Indonesia. Therefore, the government makes a policy by providing Wage Subsidy Assistance (BSU) to the community to ward off the impact of rising fuel prices. However, there were various responses from the public regarding the provision of BSU on the increase in fuel prices, especially on Twitter social media, some were supportive but some did not agree. This study aims to analyze the sentiments of the Indonesian people on government policies related to the provision of BSU to the increase in fuel prices. The data used are 795 tweets on each keyword BBM and BSU. The data is divided into 2, training data of 263 and 532 for testing data. The method used is classification with Naïve Bayes algorithm. The results of the analysis show that the BBM keyword positive sentiment is 28.2%, and negative sentiment is 71.8%. For BSU keywords, positive sentiment is 65.2% and negative sentiment is 34.8%. At the level of accuracy with this method, the result is 82.64% and the precision is 92.89%. Therefore, it can be concluded that the results of public sentiment towards the Wage Subsidy Assistance (BSU) received a positive response, while the increase in the price of fuel oil (BBM) received a negative response.
References
W. Wardani, S. Ummi Arfah, and P. Sojuangon Lubis, “Dampak kenaikan Bahan Bakar Minyak (BBM) Terhadap Inflasi dan Implikasinya Terhadap Makroekonomi di Indonesia,†All Fields of Science J-LAS, vol. 2, no. 3, pp. 63–70, Sep. 2022, [Online]. Available: https://j-las.lemkomindo.org/index.php/AFoSJ-LAS/index
S. Mujahidin, B. Prasetio, and M. C. C. Utomo, “Implementasi Analisis Sentimen Masyarakat Mengenai Kenaikan Harga BBM Pada Komentar YoutubeDengan Metode Gaussian naïve bayes,†Jurnal Vocational Teknik Elektronika dan Informatika, vol. 10, no. 3, pp. 17–24, Sep. 2022, [Online]. Available: http://ejournal.unp.ac.id/index.php/voteknika/index
Tempo.co, “BLT BBM untuk Ojek, UMKM, Nelayan, dan Transportasi Umum Cair Oktober 2022 Lewat Pemda,†Nasional Tempo, Jakarta, Sep. 12, 2022.
V. Kevin, S. Que, : Analisis, S. Transportasi, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization (Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization),†2020. [Online]. Available: www.tripadvisor.com,
Fungsiawan, “Kenaikan Tarif Ojek Online Berdampak Inflasi danPenurunan Pendapatan Domestik Bruto (PDB),†CEMERLANG : Jurnal Manajemen dan Ekonomi Bisnis, vol. 2, no. 3, pp. 268–274, Aug. 2022.
R. Fithriyana, E. N. DP, and V. Ratnawati, “Analisis Pengaruh Kenaikan Harga Bahan Bakar Minyak (BBM) Terhadap Pergerakan Harga Saham (Seminggu Sebelum dan Sesudah Kenaikan BBM) Tahun 2013,†Jurnal Ekonomi, vol. 22, no. 3, pp. 168–182, Sep. 2014.
Menteri Keuangan Republik Indonesia, “Peraturan Menteri Keuangan Republik Indonesia tentang Belanja Wajib dalam rangka Penanganan Dampak Inflasi Tahun Anggaran 2022,†Jakarta, Sep. 2022.
W. Yulita et al., “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier,†JDMSI, vol. 2, no. 2, pp. 1–9, 2021.
I. Verawati, “Algoritma Naïve Bayes Classifier Untuk Analisis Sentiment Pengguna Twitter Terhadap Provider By.u,†Jurnal Media Informatika Budidarma, vol. 6, pp. 1411–1417, Jul. 2022, doi: 10.30865/mib.v6i3.4132.
S. GarcÃa, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining, vol. 72. New York: Springer International Publishing, 2015. [Online]. Available: http://www.springer.com/series/8578
L. G. Irham, A. Adiwijaya, and U. N. Wisesty, “Klasifikasi Berita Bahasa Indonesia Menggunakan Mutual Information dan Support Vector Machine,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 3, no. 4, p. 284, Oct. 2019, doi: 10.30865/mib.v3i4.1410.
M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi,†in IOP Conference Series: Materials Science and Engineering, Jul. 2020, vol. 874, no. 1. doi: 10.1088/1757-899X/874/1/012017.
E. Sutoyo, A. Almaarif, and I. T. R. Yanto, “Sentiment Analysis of Student Evaluations of Teaching Using Deep Learning Approach,†in Lecture Notes in Networks and Systems, 2021, vol. 254, pp. 272–281. doi: 10.1007/978-3-030-80216-5_20.
S. Khairunnisa, A. Adiwijaya, and S. al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.
Y. Handayani, A. R. Hakim, and Muljono, “Sentiment analysis of Bank BNI user comments using the support vector machine method,†in Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, iSemantic 2020, Sep. 2020, pp. 202–207. doi: 10.1109/iSemantic50169.2020.9234230.
S. Fahmi, L. Purnamawati, G. F. Shidik, M. Muljono, and A. Z. Fanani, “Sentiment analysis of student review in learning management system based on sastrawi stemmer and SVM-PSO,†in Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, iSemantic 2020, Sep. 2020, pp. 643–648. doi: 10.1109/iSemantic50169.2020.9234291.
D. E. Cahyani and I. Patasik, “Performance comparison of tf-idf and word2vec models for emotion text classification,†Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2780–2788, Oct. 2021, doi: 10.11591/eei.v10i5.3157.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).