Penerapan Metode K-Medoids Clustering Untuk Mengelompokkan Ketahanan Pangan

Authors

  • N P Dharshinni Universitas Prima Indonesia, Medan
  • Ciok Fandi Universitas Prima Indonesia, Medan

DOI:

https://doi.org/10.30865/mib.v6i4.4939

Keywords:

Food Security, Data Mining, Clustering, K-Medoids, Davies Bouldin Index

Abstract

Food is a basic need that must be fulfilled and easily accessible to the entire community. After the end of the pandemic period, it still caused several sectors to decline, including the agricultural sector, which resulted in crop yields also declining. The problem faced by several regions in Indonesia, one of which is the North Sumatra region, is that the availability of food products has decreased and increased unstably due to the lack of information about the grouping food security every year. This results in the food needs of the people in each region being unfulfilled. The purpose of this study is to group areas with the number of increases and decreases in food crop yields in North Sumatra using the K-Medoids algorithm. The K-Medoids algorithm includes a deflection algorithm that is quite efficient in carrying out the shaking of small datasets and the search for the most representative points and can overcome outliers. So that it can be used in the floundering of the influence of productivity and the level of food security. The results showed that the application of the K-Medoids algorithm resulted in a DBI (Davies Bouldin Index) value of 0.062 and a Silhouette Coefficient value of 0.8980, with the number of clusters as many as 3 clusters where Cluster_0 dominated by corn food crops experienced an increase in production by 5% and peanuts by 5%, Cluster _1 was dominated by a decrease in the number of soybean production yields by 38%, and Cluster_2 dominated by a decrease in green bean yield by 33%.

References

E. T. Wibowo, “Pembangunan Ekonomi Pertanian Digital Dalam Mendukung Ketahanan Pangan (Studi di Kabupaten Sleman: Dinas Pertanian, Pangan, dan Perikanan, Daerah Istimewa Yogyakarta),†J. Ketahanan Nas., vol. 26, no. 2, p. 204, 2020, doi: 10.22146/jkn.57285.

F. Ekonomi, U. Muhammadiyah, and S. Utara, “Analisis Kebijakan Ketahanan Pangan,†2017.

Y. Wibisono, R. Iskanda, P. La, P. N. Jem, and J. M. Kotak, “ANALISIS KETAH 1 Amali,†pp. 751–760, 2019.

M. Nasir and M. Bhutta, “Secure Identification , Traceability and Real-Time Tracking of Agricultural Food Supply During Transportation Using Internet of Things,†vol. 9, 2021, doi: 10.1109/ACCESS.2021.3076373.

S. O. Oruma, S. Misra, and L. Fernandez-sanz, “Agriculture 4 . 0 : An Implementation Framework for Food Security Attainment in Nigeria ’ s Post-Covid-19 Era,†IEEE Access, vol. 9, pp. 83592–83627, 2021, doi: 10.1109/ACCESS.2021.3086453.

W. A. Saputro and Y. Fidayani, “Faktor-Faktor Yang Mempengaruhi Ketahanan Pangan Rumah Tangga Petani Di Kabupaten Klaten,†J. Agrica, vol. 13, no. 2, pp. 115–123, 2020, doi: 10.31289/agrica.v13i2.4078.

A. Ramadhan, K. Prawita, M. A. Izzudin, and G. Amandha, “Analisis strategi dan klasterisasi ketahanan pangan nasional dalam menghadapi pandemi covid-19,†Teknol. Pangan Media Inf. dan Komun. Ilm. Teknol. Pertan., vol. 12, no. 1, pp. 110–122, 2021, doi: 10.35891/tp.v12i1.2179.

F. A’dani, Y. Sukayat, I. Setiawan, and M. G. Judawinata, “Pandemi Covid-19: Keterpurukan Dan Kebangkitan Pertanian Strategi Mempertahankan Ketersediaan Pangan Pokok Rumah Tangga Petani Padi Pada Masa Pandemi Covid-19,†Mimb. Agribisnis J. Pemikir. Masy. Ilm. Berwawasan Agribisnis, vol. 7, no. 1, pp. 309–319, 2021.

A. Rohmatullah, D. Rahmalia, and M. S. Pradana, “Klasterisasi Data Pertanian Di Kabupaten,†J. Ilm. Teknosains, vol. V, no. 2, pp. 686–93, 2019.

A. M. Khariyani and E. Fauziyari, “Clustering dengan Metode K-Means Berdasarkan Potensi Pertanian di Jawa Tengah,†Pros. Pendidik. Mat. dan Mat., vol. 6, no. 2721, pp. 1–8, 2022.

H. Suryono, “Pengelompokan Provinsi Di Indonesia Berdasarkan Resiko Covid-19 Dan Ketahanan Pangan,†Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 116–123, 2021, doi: 10.34123/semnasoffstat.v2020i1.599.

M. H. Siregar, “Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan),†J. Teknol. Dan Open Source, vol. 1, no. 2, pp. 83–91, 2018, doi: 10.36378/jtos.v1i2.24.

W. Utomo, “The comparison of k-means and k-medoids algorithms for clustering the spread of the covid-19 outbreak in Indonesia,†Ilk. J. Ilm., vol. 13, no. 1, pp. 31–35, 2021, doi: 10.33096/ilkom.v13i1.763.31-35.

A. V. Ushakov and I. Vasilyev, “A parallel heuristic for a k-medoids clustering problem with unfixed number of clusters,†2019 42nd Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2019 - Proc., pp. 1116–1120, 2019, doi: 10.23919/MIPRO.2019.8756919.

S. A. L. I. Abbas et al., “K-Means and K-Medoids : Cluster Analysis on Birth Data Collected in City Muzaffarabad , Kashmir,†2020, doi: 10.1109/ACCESS.2020.3014021.

D. Methods, R. Wati, B. Sembiring, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using,†vol. 11, no. 1, pp. 32–43, 2020.

D. F. Pramesti, M. T. Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ),†vol. 1, no. 9, pp. 723–732, 2017.

Z. Mustofa and I. S. Suasana, “Algoritma Clustering K-Medoids Pada E-Government Bidang Information And Communication,†J. Teknol. dan Komun., vol. 9, pp. 1–10, 2018.

I. I. P. Damanik, S. Solikhun, I. S. Saragih, I. Parlina, D. Suhendro, and A. Wanto, “Algoritma K-Medoids untuk Mengelompokkan Desa yang Memiliki Fasilitas Sekolah di Indonesia,†Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 520, 2019, doi: 10.30645/senaris.v1i0.58.

S. A. Ritonga, M. Safii, I. Parlina, H. S. Tambunan, and S. Susiani, “Teknik Data Mining dalam Mengelompokkan Produktivitas Padi Menurut Provinsi Menggunakan K-Medoids,†Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 651, 2019, doi: 10.30645/senaris.v1i0.71.

Downloads

Published

2022-10-25