Efek Transformasi Wavelet Diskrit Pada Klasifikasi Aritmia Dari Data Elektrokardiogram Menggunakan Machine Learning
DOI:
https://doi.org/10.30865/mib.v7i1.4859Keywords:
Electrocardiogram, Discrete Wavelet Transform, Support Vector Machine, K-Nearest Neighbor, Naive BayesAbstract
Arrhythmia is one of the abnormalities of the heart rhythm, and some patients who suffer from arrhythmia do not feel any symptoms. Automating the early detection of arrhythmia is necessary by using an electrocardiogram. Previous research that had been done conducted classifications using several methods of data mining. In this research, the transformation for processing signals used is Discrete Wavelet Transformation, where a filtering process occurs that separates signals into high and low-frequency signals without losing the information from signals and is carried out with a two-level decomposition. After that, data normalization was performed using min-max normalization and was put into the model classification using the Support Vector Machine method with a Gaussian Radial Basis Function kernel of Naïve Bayes and K-Nearest Neighbor. Each data that was being used consisted of 140 data with a total of 35 data for each label. This research shows that at level 1 decomposition, the highest accuracy was obtained at db7 for the classification using Support Vector Machine with an accuracy of 73,57%, 68,57% for Naïve Bayes, K-Nearest Neighbor with k=3 resulting in an accuracy of 59,64%, and K-Nearest Neighbor with k=5 resulting in an accuracy of 63,57% while at level 2 decomposition the highest accuracy was obtained at db6 dan db8 for the classification using Support Vector Machine with an accuracy of 70,71%, 67,50% for Naïve Bayes, K-Nearest Neighbor with k=3 resulting in an accuracy of 66,07%, and K-Nearest Neighbor with k=5 resulting in an accuracy of 65%. From this research, it can be concluded that the highest accuracy is produced by decomposition level 1 using Support Vector Machine classification and that the Daubechies wavelet type has better results than the Haar wavelet.References
R. A. Cahya, C. Dewi, and B. Rahayudi, “Klasifikasi Aritmia Dari Hasil Elektrokardiogram Menggunakan Support Vector Machine Dengan Seleksi Fitur Menggunakan Algoritma Genetika,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.
R. A. Cahya, C. Dewi, and B. Rahayudi, “Arrhythmia Classification From Electrocardiogram Results Using Support Vector Machine With Feature Selection Using Genetic Algorithms,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2548, p. 964X, 2018.
T. Wang, C. Lu, Y. Sun, M. Yang, C. Liu, and C. Ou, “Automatic ECG classification using continuous wavelet transform and convolutional neural network,†Entropy, vol. 23, no. 1, p. 119, 2021.
B.-L. Zhang and Z.-Y. Dong, “An adaptive neural-wavelet model for short term load forecasting,†Electr. power Syst. Res., vol. 59, no. 2, pp. 121–129, 2001.
A. Tandyo, M. Martono, and A. Widyatmoko, “Speaker Identification Menggunakan Transformasi Wavelet Diskrit Dan Jaringan Saraf Tiruan Back-Propagation,†CommIT (Communication Inf. Technol. J., vol. 2, no. 1, pp. 1–7, 2008.
B. Belkacemi, S. Saad, Z. Ghemari, F. Zaamouche, and A. Khazzane, “Detection of induction motor improper bearing lubrication by discrete wavelet transforms (DWT) decomposition,†Instrum. Mes. Metrol., vol. 19, no. 5, pp. 347–354, Oct. 2020, doi: 10.18280/i2m.190504.
H. A. Deepak and T. Vijayakumar, “ECG Signal Classification with Hybrid Features Using Bayesian Optimized K-Nearest Neighbors Classifier,†Int. J. Intell. Eng. Syst., vol. 14, no. 6, pp. 50–65, Dec. 2021, doi: 10.22266/ijies2021.1231.06.
G. T. Ramadhani, A. Adiwijaya, and D. Q. Utama, “Klasifikasi Penyakit Aritmia Melalui Sinyal Elektrokardiogram (ekg) Menggunakan Metode Local Features Dan Support Vector Machine,†eProceedings Eng., vol. 5, no. 1, 2018.
F. Y. Marianto, T. Tarno, and I. M. Di Asih, “Perbandingan Metode Na{"i}ve Bayes Dan Bayesian Regularization Neural Network (BRNN) Untuk Klasifikasi Sinyal Palsu Pada Indikator Stochastic Oscillator (Studi Kasus: Saham PT Bank Rakyat Indonesia (Persero) Tbk Periode Januari 2017--Agustus 2019),†J. Gaussian, vol. 9, no. 1, pp. 16–25, 2020.
Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: a deep learning approach for short-term traffic forecast,†IET Intell. Transp. Syst., vol. 11, no. 2, pp. 68–75, 2017.
G. Gumilar and others, “Implementasi Transformasi Wavelet Daubechies pada Kompresi Citra Digital,†Cauchy, vol. 2, no. 4, pp. 211–215, 2013.
M. Aqil, A. Jbari, and A. Bourouhou, “ECG Signal Denoising by Discrete Wavelet Transform.,†Int. J. Online Eng., vol. 13, no. 9, 2017.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,†Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
T.-T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation,†Pattern Recognit., vol. 48, no. 9, pp. 2839–2846, 2015.
N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,†J. MEDIA Inform. BUDIDARMA, vol. 5, no. 4, pp. 1580–1584, 2021.
L. Fu, Neural networks in computer intelligence. McGraw-Hill, Inc., 1994.
M. A. Banjarsari, I. Budiman, and A. Farmadi, “Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4,†Klik-Kumpulan J. Ilmu Komput., vol. 2, no. 2, pp. 159–173, 2016.
R. Munawarah, O. Soesanto, and M. R. Faisal, “Penerapan Metode Support Vector Machine Pada Diagnosa Hepatitis,†KLIK-KUMPULAN J. ILMU Komput., vol. 3, no. 1, pp. 103–113, 2016.
M. Affandes and others, “Penerapan Metode Support Vector Machine (SVM) Menggunakan Kernel Radial Basis Faunction (RBF) Pada Klasifikasi Tweet,†SITEKIN J. Sains, Teknol. dan Ind., vol. 12, no. 2, pp. 189–197, 2015.
D. U. Dewangga, A. Adiwijaya, and D. Q. Utama, “Identifikasi Citra berdasarkan Gigitan Ular menggunakan Metode Active Contour Model dan Support Vector Machine,†J. Media Inform. Budidarma, vol. 3, no. 4, pp. 299–306, 2019.
D. Syahid, J. Jumadi, and D. Nursantika, “Sistem Klasifikasi Jenis Tanaman Hias Daun Philodendron Menggunakan Metode K-Nearest Neighboor (KNN) Berdasarkan Nilai Hue, Saturation, Value (HSV),†J. Online Inform., vol. 1, no. 1, pp. 20–23, 2016.
S. P. Adenugraha, V. Arinal, and D. I. Mulyana, “Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN dan PCA Berdasarkan Citra RGB dan HSV,†J. MEDIA Inform. BUDIDARMA, vol. 6, no. 1, pp. 9–17, 2022.
Y. Ervinaeni, A. S. Hidayat, and E. Riana, “Sistem Pakar Diagnosa Gangguan Hiperaktif Pada Anak Dengan Metode Naive Bayes Berbasis Web,†J. Media Inform. Budidarma, vol. 3, no. 2, p. 90, 2019, doi: 10.30865/mib.v3i2.1158.
L. Lia Regitaningtyas, T. Maharani, and B. Hikmahwan, “Klasifikasi Data Lulusan Siswa Smp Menggunakan Metode Naïve Bayes,†Kumpul. J. Ilmu Komput., vol. 09, no. 1, pp. 10–21, 2022.
E. Prasetyo, “Data mining konsep dan aplikasi menggunakan matlab,†Yogyakarta Andi, vol. 1, 2012.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).