Klasterisasi Konsentrasi Keahlian Siswa SMK Berdasarkan Kurikulum Merdeka
DOI:
https://doi.org/10.30865/mib.v6i4.4848Keywords:
Data Mining, Clustering, Expertise Concentration, K-Means AlgorithmAbstract
The process of determining the concentration of expertise carried out at the YPC Tasikmalaya Vocational School has shortcomings such as making decisions based on the wishes of students without paying attention to academic grades at the previous level of education. So that there are some students who feel it is not right in choosing the concentration of expertise, resulting in a lack of competence possessed by students with the concentration of expertise selected. The choice of concentration of expertise is the right of every student, but if it is wrong it can cause a decrease in learning motivation and low learning achievement. This problem can be solved by using clustering method with K-Means algorithm. This study aims to classify students' interests in choosing a concentration of expertise at YPC Tasikmalaya Vocational School based on the Merdeka Curriculum. The results showed that the grouping of students' interests in choosing the concentration of expertise was formed into 4 clusters. The cluster with the most members is cluster 0, namely students who have an average score of 79 Mathematics, then Indonesian and English 83. Furthermore, the cluster with the least number of members is cluster 2, namely students who have an average score of 78 Mathematics and English, then Indonesian 79.References
D. Merawati and R. Rino, “Penerapan Data Mining Penentu Minat Dan Bakat Siswa Smk Dengan Metode C4. 5,†ALGOR, vol. 1, no. 1, pp. 28–37, 2019.
A. F. O. Pasaribu, “Analisis Pola Menggunakan Metode C4. 5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus: Sman 1 Natar),†J. Teknol. Dan Sist. Inf., vol. 2, no. 1, pp. 80–85, 2021.
Y. S. Nugroho, “Klasifikasi dan Klastering Penjurusan Siswa SMA Negeri 3 Boyolali,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 1, no. 1, pp. 1–6, 2015.
Y. Lase and E. Panggabean, “Implementasi Metode K-Means Clustering Dalam Sistem Pemilihan Jurusan Di SMK Swasta Harapan Baru,†J. Teknol. Dan Ilmu Komput. Prima, vol. 2, no. 2, pp. 375–379, 2019.
F. Solikhah, M. Febianah, A. L. Kamil, W. A. Arifin, and S. J. S. Tyas, “Analisis Perbandingan Algoritma Naive Bayes Dan C. 45 Dalam Klasifikasi Data Mining Untuk Memprediksi Kelulusan,†Temat. J. Teknol. Inf. Komun., vol. 8, no. 1, pp. 96–103, 2021.
Z. Nabila, A. R. Isnain, P. Permata, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†J. Teknol. Dan Sist. Inf., vol. 2, no. 2, pp. 100–108, 2021.
S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R. H. Zer, and D. Hartama, “Analisis algoritma k-medoids clustering dalam pengelompokan penyebaran covid-19 di indonesia,†J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020.
P. H. Simbolon, “Implementasi Data Mining Pada Sistem Persediaan Barang Menggunakan Algoritma Apriori (Studi Kasus: Srikandi Cash Credit Elektronic dan Furniture),†JURIKOM (Jurnal Ris. Komputer), vol. 6, no. 4, pp. 401–406, 2019.
F. Akbar, “Clustering Data Nilai Siswa SMA Untuk Penentuan Jurusan Menggunakan Algoritma Fuzzy C-Means,†Techno Nusa Mandiri J. Comput. Inf. Technol., vol. 12, no. 1, pp. 56–63, 2015.
M. Triandini, S. Defit, and G. W. Nurcahyo, “Data Mining dalam Mengukur Tingkat Keaktifan Siswa dalam Mengikuti Proses Belajar pada SMP IT Andalas Cendekia dengan Menggunakan Metode K-Means Clustering,†J. Inf. Dan Teknol., pp. 167–172, 2021.
R. P. Primanda, A. Alwi, and D. Mustikasari, “Data Mining Seleksi Siswa Berprestasi Untuk Menentukan Kelas Unggulan Menggunakan Metode K-Means Clustering (Studi Kasus di MTS Darul Fikri),†KOMPUTEK, vol. 5, no. 1, pp. 88–100, 2021.
J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 606–620, 2022.
Suyanto, Data Mining untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika, 2019.
Y. Mardi, “Data Mining: Klasifikasi Menggunakan Algoritma C4. 5,†J. Edik Inform. Penelit. Bid. Komput. Sains dan Pendidik. Inform., vol. 2, no. 2, pp. 213–219, 2017.
A. A. Fajrin and A. Maulana, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,†Kumpul. J. Ilmu Komput., vol. 5, no. 01, pp. 1–10, 2018.
R. A. Indraputra and R. Fitriana, “K-Means Clustering Data COVID-19,†J. Tek. Ind., vol. 10, no. 3, pp. 275–282, 2020.
A. Ali, “Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 1, pp. 186–195, 2019.
K. Sinaga and K. Handoko, “Implementasi Data Mining Untuk Memprediksi Kelulusan Siswa Dengan Metode Naïve Bayes,†Comput. Sci. Ind. Eng., vol. 4, no. 6, pp. 97–107, 2021.
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,†J. Media Inform. Budidarma, vol. 4, no. 1, pp. 51–58, 2020.
A. Akramunnisa and F. Fajriani, “K-means clustering analysis pada Persebaran Tingkat pengangguran kabupaten/kota di Sulawesi selatan,†J. Varian, vol. 3, no. 2, pp. 103–112, 2020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).