Application of Data Mining using Naive Bayes for Student Success Rates in Learning
DOI:
https://doi.org/10.30865/mib.v6i4.4639Keywords:
Success, Learning, Data Mining, Prediction, Nave Bayes.Abstract
Education is a very important part of human life because through education quality human resources will be formed. Quality education can be read and measured by the achievement of various indicators. However, achieving these indicators is not easy, because learning success is influenced by several factors. One of the factors that can affect the success of learning is the learning system. To understand the level of student success in learning, a data mining processing technique is needed. The algorithm that will be used in this research is the naive Bayes algorithm. This study uses 601 datasets per year from Academic Year 2019/2020 to Academic Year 2021/2022, the data used are attendance score data, assignment scores, mid-exam scores, semester exam scores, and averages. The test is divided into 3, namely testing for the Academic Year 2019/2020 dataset, testing for the Academic Year 2020/2021 dataset, and testing for Academic Year 2021/2022 using the split validation operator. The test results using the Academic Year 2019/2020 – Academic Year 2020/2021 student score dataset have an accuracy value of 95.01% while the Academic Year 2021/2022 student score dataset has an accuracy value of 97.79%.References
A. Aprijal, A. Alfian, and S. Syarifudin, “Pengaruh Minat Belajar Siswa Terhadap Hasil Belajar Siswa di Madrasah Ibtidaiyah Darussalam Sungai Salak Kecamatan Tempuling,†MITRA PGMI J. Kependidikan MI, vol. 6, no. 1, pp. 76–91, 2020, doi:10.46963/mpgmi.v6i1.125.
T. Nabillah and A. P. Abadi, “Faktor Penyebab Rendahnya Hasil Belajar Siswa,†Pros. Sesiomadika, vol. 2, no. 1, pp. 659–663, 2020.
S. A. Wijaya, R. A. Novi W, and S. D. Saputri, “Pengaruh Kebiasaan Belajar Terhadap Prestasi Belajar Siswa,†Ekuitas J. Pendidik. Ekon., vol. 7, no. 2, pp. 117–121, 2019, doi: 10.23887/ekuitas.v7i2.17917.
S. Marpaung, S. -, and I. -, “Penerapan Metode Naïve Bayes Dalam Memprediksi Prestasi Siswa Di SMA Negeri 1 Panombeian Panei,†J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 4, no. 2, pp. 8–13, 2021, doi:
34012/jurnalsisteminformasidanilmukomputer.v4i2.1522.
K. F. Irnanda, D. Hartama, and A. P. Windarto, “Analisa Klasifikasi C4 . 5 Terhadap Faktor Penyebab Menurunnya Prestasi Belajar Mahasiswa Pada Masa Pandemi,†J. Media Inform. Budidarma, vol. 5, no. 1, pp. 327–331, 2021, doi: 10.30865/mib.v5i1.2763.
Y. Niak, W. Mataheru, and D. A. Ngilawayan, “Perbedaan Hasil Belajar Siswa Pada Model Pembelajaran Kooperatif Tipe Circ Dan Model Pembelajaran Konvensional,†J. Honai Math, vol. 1, no. 2, p. 67, 2018, doi: 10.30862/jhm.v1i2.1040.
E. Ahadi, I. Gunawan, I. O. Kirana, D. Hartama, and M. R. Lubis, “Penentuan Keberhasilan Pembelajaran Daring Pada Masa Pandemi Covid-19 dengan Menggunakan Algoritma C4.5 di Stikom Tunas Bangsa,†J. Komput. dan Inform., vol. 10, no. 1, pp. 78–85, 2022, doi: 10.35508/jicon.v10i1.6446.
M. F. Rifai, H. Jatnika, and B. Valentino, “Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS),†Petir, vol. 12, no. 2, pp. 131–144, 2019, doi: 10.33322/petir.v12i2.471. [8] I. W. Saputro and B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,†Creat. Inf. Technol. J., vol. 6, no. 1, p. 1, 2020, doi: 10.24076/citec.2019v6i1.178.
D. Yunita, P. Rosyani, and R. Amalia, “Analisa Prestasi Siswa Berdasarkan Kedisiplinan, Nilai Hasil Belajar, Sosial Ekonomi dan Aktivitas Organisasi Menggunakan Algoritma Naïve Bayes,†J. Inform. Univ. Pamulang, vol. 3, no. 4, p. 209, 2018, doi: 10.32493/informatika.v3i4.2032.
A. R. Damanik, S. Sumijan, and G. W. Nurcahyo, “Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes,†J. Sistim Inf. dan Teknol., vol. 3, no. 3, pp. 88–94, 2021, doi: 10.37034/jsisfotek.v3i3.137.
N. Nurajijah, D. A. Ningtyas, and M. Wahyudi, “Klasifikasi Siswa Smk Berpotensi Putus Sekolah Menggunakan Algoritma Decision Tree, Support Vector Machine Dan Naive Bayes,†J. Khatulistiwa Inform., vol. 7, no. 2, pp. 85–90, 2019, doi: 10.31294/jki.v7i2.6839.
I. A. Sihombing, D. Hartama, I. Parlina, I. Gunawan, and I. O. Kirana, “Analisis Keberhasilan Pembelajaran Daring pada Masa Pandemi Covid-19 menggunakan Algoritma C4.5 dan Naive Bayes,†JUKI J. Komput. dan Inform., vol. 3, no. 2, pp. 89– 96, 2021, doi: 10.53842/juki.v3i2.68.
W. Yustanti and N. Rochmawati, “Analisis Algoritma Klasifikasi untuk Memprediksi Karakteristik Mahasiswa pada Pembelajaran Daring,†J. Edukasi dan Penelit. Inform., vol. 8, no. 1, pp. 57–61, 2022.
Y. Angraini, S. Fauziah, and J. L. Putra, “Analisis Kinerja Algoritma C4.5 Dan Naïve Bayes Dalam Memprediksi Keberhasilan Sekolah Menghadapi Un,†JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 285–290, 2020, doi: 10.33480/jitk.v5i2.1233.
Rumini and Norhikmah, “Prediksi Kegagalan Siswa Dalam Data Mining Dengan,†J. Mantik Penusa Vol. 3, No. 1.1, Agustus 2019, vol. 3, no. September, pp. 42–46, 2019.
M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†Creat. Inf. Technol. J., vol. 4, no. 2, p. 151, 2018, doi: 10.24076/citec.2017v4i2.106.
P. A. Lizsara, S. Oyama, and S. Wardani, “Implementasi Data Mining Menggunakan Metode Naïve Bayes Untuk Memprediksi Ketepatan Waktu Tingkat Kelulusan Mahasiswa (Study Kasus: Program Studi Informatika Universitas PGRI Yogyakarta),†Seri Pros. Semin. Nas. Din. Inform., vol. 4, no. 1, pp. 34–37, 2020, [Online]. Available: http://prosiding.senadi.upy.ac.id/index.php/senadi/article/view/121
Dharshinni, N., Sitepu, A., Syuhada, R., Barasa, D., & Wijaya, A. “Moodle Web-Based Learning Constraints toward Student Learning Interest Using C4.5 Algorithm during Covid-19 Pandemicâ€. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 5(1), 132-141. 2022. doi:https://doi.org/10.31289/jite.v5i1.5301
A. Gupta, L. Kumar, R. Jain, and P. Nagrath, “Heart Disease Prediction Using Classification (Naive Bayes),†in Lecture Notes in Networks and Systems, vol. 121, 2020. doi: 10.1007/978-981-15-3369-3_42.
D. Berrar, “Bayes’ theorem and naive bayes classifier,†in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, vol. 1–3, 2018. doi: 10.1016/B978-0-12-809633-8.20473-1.
N. Ye, “Naïve Bayes Classifier,†in Data Mining, 2020. doi: 10.1201/b15288-5.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).