Analisis Sentimen Komentar Pengunjung Terhadap Tempat Wisata Danau Weekuri Menggunakan Metode Naive Bayes Classifier Dan K-Nearest Neighbor
DOI:
https://doi.org/10.30865/mib.v6i4.4635Keywords:
Crystal Cave, KNN, Naive Bayes Classifier, TourismAbstract
Trip Advisor is the largest travel site in the world that helps tourists in planning and booking travel. One of the recommended attractions on the TripAdvisor website is the Crystal Cave, which is located in Kupang City. Human habit in posting tourist attractions visited is a common thing to present human responses to one of the tourist attractions. Usually there are certain parties who want to know the sentiments and responses to one of the tourist attractions. Therefore, this study will conduct a sentiment analysis of one of the tourist attractions in the city of Kupang is the Crystal Cave. The analysis was carried out by classifying people's sentiments. The calcification method used in this study is Navie Bayes Classifier and K-Nearest Neighbor. From these two methods a comparison will be done to find out the level of accuracy. Sentiment classification consists of positive and negative. The purpose of this study is to provide information about the quality of one of the tourist attractions in the city of Kupang by using sentiment from visitors and determine the level of accuracy of the comparison of the two methods tested. The test results will be tested on the Rapidminer tool showing the level of accuracy of testing both methods.References
M. Nurjanah and T. Arifin, “Penerapan Algoritma K-Means Untuk Analisis Data Ulasan Di Situs Tripadvisor,†J. Responsif Ris. Sains dan Inform., vol. 3, no. 1, pp. 75–82, 2021, doi: 10.51977/jti.v3i1.395.
S. Seimahuira, “Implementasi Datamining Dalam Menentukan Destinasi Unggulan Berdasarkan Online Reviews Tripadvisor Menggunakan Algoritma K-Means,†Technol. J. Ilm., vol. 12, no. 1, p. 53, 2021, doi: 10.31602/tji.v12i1.4229.
H. Leidiyana, “Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor,†J. Penelit. Ilmu Komputer, Syst. Embed. Log., vol. 1, no. 1, pp. 65–76, 2013.
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†Eeccis, vol. 7, no. 1, pp. 59–64, 2013, doi: 10.1038/hdy.2009.180.
F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5. 0 Algorithm,†IJICS (International J. Informatics Comput. Sci., vol. 5, no. 2, 2021.
U. R. Amanda and D. P. Utomo, “Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 5, no. 1, 2021.
D. P. Indini, S. R. Siburian, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,†in Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi, 2022, pp. 325–331.
R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-Nn),†EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371.
S. Ernawati and R. Wati, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel,†J. Khatulistiwa Inform., vol. 6, no. 1, pp. 64–69, 2018.
M. R. Irfan, “Analisis Sentimen Kurikulum 2013 pada Twitter menggunakan Ensemble Feature dan Metode K-Nearest Neighbor,†Universitas Brawijaya, 2018.
I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 187, 2017, doi: 10.22146/ijccs.24716.
A. M. Pudjajana and D. Manongga, “Sentimen Analisis Tweet Pornografi Kaum Homoseksual Indonesia Di Twitter Dengan Naive Bayes,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 313–318, 2018, doi: 10.24176/simet.v9i1.1922.
A. Fathan Hidayatullah and A. Sn, “Analisis Sentimen Dan Klasifikasi Kategori Terhadap Tokoh Publik Pada Twitter,†Semin. Nas. Inform., vol. 2017, no. semnasIF, pp. 115–122, 2017, [Online]. Available: http://www.situs.com.
C. Amalia and Y. Sibaroni, “Analisis Sentimen Data Tweet Menggunakan Model Jaringan Saraf Tiruan Dengan Pembobotan Delta Tf-idf,†eProceedings …, vol. 7, no. 2, pp. 7810–7820, 2020, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/12799.
H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,†J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.
M. Syukri Mustafa, M. Rizky Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†Citec J., vol. 4, no. 2, pp. 151–162, 2017.
A. J. Nathan and A. Scobell, “Model Algoritma K-nearest Neighbor untuk memprediksi kelulusan mahasiswa,†Foreign Aff., vol. 91, no. 5, pp. 1–9, 2012.
M. Rivki and A. M. Bachtiar, “Implementasi Algoritma K-Nearest Neighbor Dalam Pengklasifikasian Follower Twitter Yang Menggunakan Bahasa Indonesia,†J. Sist. Inf., vol. 13, no. 1, p. 31, 2017, doi: 10.21609/jsi.v13i1.500.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).