Klasifikasi Emosi Pada Lirik Lagu Menggunakan Algoritma Multiclass SVM dengan Tuning Hyperparameter PSO

Authors

  • Helen Sastypratiwi Universitas Tanjungpura, Pontianak
  • Hafiz Muhardi Universitas Tanjungpura, Pontianak
  • Mega Noveanto Universitas Tanjungpura, Pontianak

DOI:

https://doi.org/10.30865/mib.v6i4.4609

Keywords:

Emotion Classification, Song Lyrics, Hyperparameter Tuning, Multi-Class Support Vector Machine, Particle Swarm Optimization

Abstract

Currently, it is increasingly difficult to determine the emotion in a song because the numbers of the songs continue to increase, based on this problem, the researcher makes a classification model using text classification. Based on these problems, this study uses the Multi Class Support Vector Machine (SVM) method with Particle Swarm Optimization (PSO) as a tuning hyperparameter and comparing the effect of 3 datasets (lines, verses, and whole songs) in the case of classifying the emotions of song lyrics. In this case, there are five basic human emotions, in-between love, happiness, anger, fear, and sad. Based on the test results on each model, scenario 2 (SVM-PSO Perbaris) does provide the best model performance with an accuracy value of 92.13%. However, if we look at the performance value, it changes from the evaluation of the training data to the testing data presented in table 4.3, the most significant changes occur in the verses dataset and the whole song dataset. This can happen because the content or value of the per-bait dataset and the whole song has more sentences than the per-line dataset. So that the quality will be better if you use the verses dataset or the whole song. This research has also succeeded in make the classification of emotions so that it can classify the class of emotions from the text of Indonesian song lyrics.

References

Lailatul Izzah, “Pengaruh Mendengarkan MusikTerhadap Mood Belajar Pada Mahasiswa Manajemen Dakwah UIN Suska Riau,†Nathiqiyyah, vol. 03, no. 01, 2020.

F. S. Sinaga, Indriati, and B. Rahayudi, “Klasifikasi Emosi Lirik Lagu menggunakan Improved K-Nearest Neighbor dengan Seleksi Fitur dan BM25,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, pp. 5697–5702, 2019.

Z. Pentury, “Nilai Motivasi Dalam Lirik Lagu Pop Indonesia (Kajian Semantik),†Arbitrer, J. Pendidik. Bhs. dan Sastra Indones., vol. 2, no. 3, pp. 381–394, 2020.

Sulkifli and Marwati, “Kemampuan Menulis Puisi Siswa Kelas Viii Smp Negeri Satu Atap 3 Langgikima Kabupaten Konawe Utara,†J. Bastra, vol. 1, no. 1, pp. 1–22, 2016.

P. R. Shaver, U. Murdaya, and R. C. Fraley, “Structure of the Indonesian emotion lexicon,†pp. 201–224, 2001.

I. D. Abirawa, A. B. Osmond, and C. Setianingsih, “Klasifikasi Emosi Pada Lirik Lagu Menggunakan Metode Support Vector Machine,†E-proceeding Eng., vol. 5, no. 3, pp. 6203–6209, 2018.

C. I. Salekhah, “Implementasi Metode Multi Class Support Vector Machine Untuk Klasifikasi Emosi Pada Lirik Lagu Bahasa Indonesia,†2016.

E. N. Azizah and E. Rainarli, “Support Vector Machine Dan Information Gain Untuk Klasifikasi Emosi Pada Lirik Lagu,†2019.

F. S. Chayati, “Klasifikasi Emosi Pada Tweet Menggunakan Metode Support Vector Machine,†Universitas Islam Negeri Sultan Syarif Kasim Riau, 2020.

V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,†J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020, doi: 10.22146/jnteti.v9i2.102.

Lester James V. Miranda, “PySwarms Documentation,†2017. https://pyswarms.readthedocs.io/en/latest/api/pyswarms.single.html (accessed Mar. 11, 2022).

A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Population size in Particle Swarm Optimization,†Swarm Evol. Comput., vol. 58, p. 100718, 2020, doi: 10.1016/j.swevo.2020.100718.

W. A. Luqyana, “Instagram Dengan Metode Klasifikasi Support Vector Machine,†Universitas Brawijaya, 2018.

H. Benbrahim and M. Bramer, “Text and hypertext categorization,†in Lecture Notes in Computer Science, vol. 5640, 2009, pp. 11–38.

E. Lopes, E. Klein, and S. Bird, “Natural Language Toolkit (NLTK).†pp. 1–11, 2019, [Online]. Available: http://www.nltk.org/book/ch00.html.

F. Z. Tala, A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. 2003.

C. Lorento, “Berdasarkan Tweet Terkait Kebijakan Kemendikbud Di Masa Pandemi Covid-19,†Universitas Tajungpura, 2022.

A. Auliaguntary Arif Putra, “Implementasi Text Summarization Menggunakan Metode Vector Space Model Pada Artikel Berita Berbahasa Indonesia,†2016.

R. Siringoringo, “Klasifikasi Data Tidak Seimbang Menggunakan Algoritma SMOTE dan k-Nearest Neighbor,†J. ISD, vol. 3, no. 1, pp. 44–49, 2018.

Hermanto, A. Mustopa, and A. Y. Kuntoro, “Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa,†JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 211–220, 2020, doi: 10.33480/jitk.v5i2.1181.

M. Rangga, A. Nasution, and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,†vol. 6, no. 2, pp. 226–235, 2019.

D. Alita, Y. Fernando, and H. Sulistiani, “Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter,†J. Tekno Kompak, vol. 14, no. 2, p. 86, 2020, doi: 10.33365/jtk.v14i2.792.

Downloads

Published

2022-10-25