Netflix Movie Recommendation System Using Collaborative Filtering With K-Means Clustering Method on Twitter

Authors

  • Muhammad Tsaqif Muhadzdzib Ramadhan Telkom University, Bandung
  • Erwin Budi Setiawan Telkom University, Bandung

DOI:

https://doi.org/10.30865/mib.v6i4.4571

Keywords:

Collaborative Filtering, User-Based, Item-Based, K-Means Clustering, Recommendation System

Abstract

Nowadays, the development of technology is very rapid, so watching movies at home has become a means of entertainment. Netflix is one of the platforms for watching movies and provides various movie titles. However, because of the many movie titles, it makes it difficult for users to determine the movie they want to watch. The solution to this problem is to provide a recommendation system that can provide movie recommendations to watch. Collaborative filtering is a method that exists in the recommendation system by providing recommendations based on the ratings given by other users. Collaborative filtering is divided into two, namely based on items (item-based) and based on users (user-based). Twitter is a social media used to write posts called tweets. For this system, tweets serve as data that will be processed into ratings. This research was conducted using k-means clustering with collaborative filtering and collaborative filtering only. By using a dataset obtained from Twitter by crawling data and added with ratings from IMDb, Rotten Tomatoes, and Metacritic. Which resulted in a dataset with 35 users, 785 movie titles, and 6184 reviews. Then preprocessing the data with text processing, polarity, and labeling. And get the dataset that will be used for this experiment. The results of this research test show that k-means clustering with collaborative filtering gets the best results with the best prediction of 2.8466, getting an MAE value of 0.5029, and an RMSE value of 0.6354

Author Biographies

Muhammad Tsaqif Muhadzdzib Ramadhan, Telkom University, Bandung

Prodi Teknik Informatika

Erwin Budi Setiawan, Telkom University, Bandung

Prodi Teknik Informatika

References

G. Kumar, S. Rathod, and A. Laha, “Sentiment Analysis on Micro-Blogs,†SSRN Electron. J., vol. 4, no. 11, pp. 121–126, 2021, doi: 10.2139/ssrn.3867142.

L. R. Dharmawan, I. Arwani, and D. E. Ratnawati, “Analisis Sentimen pada Sosial Media Twitter Terhadap Layanan Sistem Informasi Akademik Mahasiswa Universitas Brawijaya dengan Metode K- Nearest Neighbor,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, pp. 959–965, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7099.

V. L. Jaja, B. Susanto, and L. R. Sasongko, “Penerapan Metode Item-Based Collaborative Filtering Untuk Sistem Rekomendasi Data MovieLens,†d’CARTESIAN, vol. 9, no. 2, p. 78, 2020, doi: 10.35799/dc.9.2.2020.28274.

P. G. Padti, K. Hegde, and P. Kumar, “Hybrid Movie Recommender System,†vol. 4, no. 7, pp. 311–314, 2021.

A. Halim, H. Gohzali, D. M. Panjaitan, and I. Maulana, “Sistem Rekomendasi Film menggunakan Bisecting K-Means dan Collaborative Filtering,†Citisee, vol. 1, no. 3, pp. 37–41, 2017.

P. Phorasim and L. Yu, “Movies recommendation system using collaborative filtering and k-means,†Int. J. Adv. Comput. Res., vol. 7, no. 29, pp. 52–59, 2017, doi: 10.19101/IJACR.2017.729004.

Y. P. Santoso, M. Marlina, and H. Agung, “Implementasi Metode K-Means Clustering pada Sistem Rekomendasi Dosen Tetap Berdasarkan Penilaian Dosen,†J. Inform. Univ. Pamulang, vol. 3, no. 4, p. 228, 2018, doi: 10.32493/informatika.v3i4.2133.

M. Billah, M. A. Zartesya, D. S. Prasvita, S. Komp, and M. Kom, “Penerapan Collaborative Filtering , PCA dan K-Means dalam Pembangunan Sistem Rekomendasi Film,†no. April, pp. 579–587, 2021.

R. Ahuja, A. Solanki, and A. Nayyar, “Movie recommender system using k-means clustering and k-nearest neighbor,†Proc. 9th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2019, pp. 263–268, 2019, doi: 10.1109/CONFLUENCE.2019.8776969.

R. A. Rizkie and M. Fachrurrozi, “Sistem Rekomendasi Wisata Kuliner Kota Palembang Menggunakan Metode Collaborative Filtering,†Generic, vol. 12, no. 1, pp. 1–3, 2020, [Online]. Available: http://generic.ilkom.unsri.ac.id/index.php/generic/article/view/101.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,†Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, “Classification of tweets data based on polarity using improved RBF kernel of SVM,†Int. J. Inf. Technol., 2020, doi: 10.1007/s41870-019-00409-4.

M. Garanayak, S. N. Mohanty, A. K. Jagadev, and S. Sahoo, “Recommender system using item based collaborative filtering (CF) and K-means,†Int. J. Knowledge-Based Intell. Eng. Syst., vol. 23, no. 2, pp. 93–101, 2019, doi: 10.3233/KES-190402.

I. Yoshua and H. Bunyamin, “Pengimplementasian Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering,†J. Strateg. …, vol. 3, pp. 1–16, 2021, [Online]. Available: https://www.strategi.it.maranatha.edu/index.php/strategi/article/view/220.

G. Ferio, R. Intan, and S. Rostianingsih, “Sistem Rekomendasi Mata Kuliah Pilihan Menggunakan Metode User Based Collaborative Filtering Berbasis Algoritma Adjusted Cosine Similarity,†J. Infra, vol. 7, no. 1, pp. 1–7, 2019.

S. Pawar, P. Patne, P. Ratanghayra, S. Dadhich, and S. Jaswal, “Movies Recommendation System using Cosine Similarity,†vol. 7, no. 4, pp. 342–346, 2022.

A. Pamuji, “Sistem Rekomendasi Kredit Perumahan Rakyat Dengan Menggunakan Metode Collaborative Filtering,†Fakt. Exacta, vol. 10, no. 1, pp. 1–9, 2017.

A. N. Khusna, K. P. Delasano, and D. C. E. Saputra, “Penerapan User-Based Collaborative Filtering Algorithm,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 293–304, 2021, doi: 10.30812/matrik.v20i2.1124.

Downloads

Published

2022-10-25