Sentiment Analysis of Telkom University as the Best BPU in Indonesia Using the Random Forest Method

Authors

  • Irfan Budi Prakoso Telkom University, Bandung
  • Donni Richasdy Telkom University, Bandung
  • Mahendra Dwifebri Purbolaksono Telkom University, Bandung

DOI:

https://doi.org/10.30865/mib.v6i4.4567

Keywords:

LinkedIn, Random Forest, Telkom University, Social Media, Sentiment Analysis

Abstract

In this day and age, social media has become a necessity for every human being. By using social media networks, users can easily exchange information, especially on linkedin social media. Linkedin is a social media network that can search for information openly, mainly used for professional networking. It will be easier and more practical to connect with professionals worldwide. Like identity, LinkedIn is often used as a medium to introduce yourself or your business to potential colleagues or companies for various purposes. Social media networks are often used to deliver information in various institutions at State Universities (PTN) and Private Universities (PTS). For example, it conveys information about state and private universities' achievements (PTS) achievements. Telkom University uses Linkedin to convey the achievements that have been achieved. This triggers the public to see posts that are positive, negative, or neutral. This study aims to conduct a sentiment analysis about Telkom University which has become the best private university in Indonesia, based on opinions submitted on LinkedIn social media. The process carried out in this study is to process all opinion data about Telkom University, which is the best private university in Indonesia, from Linkedin and then classification using the Random Forest method based on the categories of positive, neutral, and negative sentiments. Sentiment analysis results that have been obtained using the Random Forest classification method are 92.85% accuracy, 83.33% precision, 91.67% recall, and 84.13% F1-score%.

Author Biography

Irfan Budi Prakoso, Telkom University, Bandung

Prodi Informatika

References

Public Relations TelkomUniversity, “‘Telkom University, PTS Terbaik di Indonesia,’†telkomuniversity.ac.id, 2021. https://telkomuniversity.ac.id/telkom-university-pts-terbaik-di-indonesia/ (accessed Nov. 30, 2021).

A. A. Maarif, “Penerapan Algoritma TF-IDF untuk Pencarian Karya Ilmiah,†Dok. Karya Ilm. | Tugas Akhir | Progr. Stud. Tek. Inform. - S1 | Fak. Ilmu Komput. | Univ. Dian Nuswantoro Semarang, no. 5, p. 4, 2015, [Online]. Available: mahasiswa.dinus.ac.id/docs/skripsi/jurnal/15309.pdf.

R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,†E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247.

“View of Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus_ Ulasan Pelanggan Pada Situs TRIPADVISOR).pdf.†.

R. D. Himawan and E. Eliyani, “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi,†J. Edukasi dan Penelit. Inform., vol. 7, no. 1, p. 58, 2021, doi: 10.26418/jp.v7i1.41728.

M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,†J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021, doi: 10.26877/jiu.v7i1.7099.

A. Santoso, A. Nugroho, and A. S. Sunge, “Analisis Sentimen Tentang Mobil Listrik Dengan Metode Support Vector Machine Dan Feature Selection Particle Swarm Optimization,†vol. 2, no. 1, pp. 24–31, 2022.

N. A. S. N. Muhammad Yusril Aldean, Paradise, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),†vol. 8106, pp. 64–72, 2022.

“Tampilan Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM).pdf.†.

V. S and J. R, “Text Mining: open Source Tokenization Tools – An Analysis,†Adv. Comput. Intell. An Int. J., vol. 3, no. 1, pp. 37–47, 2016, doi: 10.5121/acii.2016.3104.

E. B. Setiawan, D. H. Widyantoro, and K. Surendro, “Feature expansion using word embedding for tweet topic classification,†Proceeding 2016 10th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA 2016 Spec. Issue Radar Technol., no. 2011, 2017, doi: 10.1109/TSSA.2016.7871085.

A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,†Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.

K. Schouten, F. Frasincar, and R. Dekker, “An information gain-driven feature study for aspect-based sentiment analysis,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9612, pp. 48–59, 2016, doi: 10.1007/978-3-319-41754-7_5.

R. Dzisevic and D. Sesok, “Text Classification using Different Feature Extraction Approaches,†2019 Open Conf. Electr. Electron. Inf. Sci. eStream 2019 - Proc., pp. 1–4, 2019, doi: 10.1109/eStream.2019.8732167.

M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,†IEEE Access, vol. 8, pp. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222.

Karsito and S. Susanti, “Klasifikasi Kelayakan Peserta Pengajuan Kredit Rumah Dengan Algoritma Naïve Bayes Di Perumahan Azzura Residencia,†J. Teknol. Pelita Bangsa, vol. 9, pp. 43–48, 2019.

Downloads

Published

2022-10-25