Sentiment Analysis of Telkom University as the Best BPU in Indonesia Using the Random Forest Method
DOI:
https://doi.org/10.30865/mib.v6i4.4567Keywords:
LinkedIn, Random Forest, Telkom University, Social Media, Sentiment AnalysisAbstract
In this day and age, social media has become a necessity for every human being. By using social media networks, users can easily exchange information, especially on linkedin social media. Linkedin is a social media network that can search for information openly, mainly used for professional networking. It will be easier and more practical to connect with professionals worldwide. Like identity, LinkedIn is often used as a medium to introduce yourself or your business to potential colleagues or companies for various purposes. Social media networks are often used to deliver information in various institutions at State Universities (PTN) and Private Universities (PTS). For example, it conveys information about state and private universities' achievements (PTS) achievements. Telkom University uses Linkedin to convey the achievements that have been achieved. This triggers the public to see posts that are positive, negative, or neutral. This study aims to conduct a sentiment analysis about Telkom University which has become the best private university in Indonesia, based on opinions submitted on LinkedIn social media. The process carried out in this study is to process all opinion data about Telkom University, which is the best private university in Indonesia, from Linkedin and then classification using the Random Forest method based on the categories of positive, neutral, and negative sentiments. Sentiment analysis results that have been obtained using the Random Forest classification method are 92.85% accuracy, 83.33% precision, 91.67% recall, and 84.13% F1-score%.References
Public Relations TelkomUniversity, “‘Telkom University, PTS Terbaik di Indonesia,’†telkomuniversity.ac.id, 2021. https://telkomuniversity.ac.id/telkom-university-pts-terbaik-di-indonesia/ (accessed Nov. 30, 2021).
A. A. Maarif, “Penerapan Algoritma TF-IDF untuk Pencarian Karya Ilmiah,†Dok. Karya Ilm. | Tugas Akhir | Progr. Stud. Tek. Inform. - S1 | Fak. Ilmu Komput. | Univ. Dian Nuswantoro Semarang, no. 5, p. 4, 2015, [Online]. Available: mahasiswa.dinus.ac.id/docs/skripsi/jurnal/15309.pdf.
R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,†E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247.
“View of Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus_ Ulasan Pelanggan Pada Situs TRIPADVISOR).pdf.†.
R. D. Himawan and E. Eliyani, “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi,†J. Edukasi dan Penelit. Inform., vol. 7, no. 1, p. 58, 2021, doi: 10.26418/jp.v7i1.41728.
M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,†J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021, doi: 10.26877/jiu.v7i1.7099.
A. Santoso, A. Nugroho, and A. S. Sunge, “Analisis Sentimen Tentang Mobil Listrik Dengan Metode Support Vector Machine Dan Feature Selection Particle Swarm Optimization,†vol. 2, no. 1, pp. 24–31, 2022.
N. A. S. N. Muhammad Yusril Aldean, Paradise, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),†vol. 8106, pp. 64–72, 2022.
“Tampilan Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM).pdf.†.
V. S and J. R, “Text Mining: open Source Tokenization Tools – An Analysis,†Adv. Comput. Intell. An Int. J., vol. 3, no. 1, pp. 37–47, 2016, doi: 10.5121/acii.2016.3104.
E. B. Setiawan, D. H. Widyantoro, and K. Surendro, “Feature expansion using word embedding for tweet topic classification,†Proceeding 2016 10th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA 2016 Spec. Issue Radar Technol., no. 2011, 2017, doi: 10.1109/TSSA.2016.7871085.
A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,†Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.
K. Schouten, F. Frasincar, and R. Dekker, “An information gain-driven feature study for aspect-based sentiment analysis,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9612, pp. 48–59, 2016, doi: 10.1007/978-3-319-41754-7_5.
R. Dzisevic and D. Sesok, “Text Classification using Different Feature Extraction Approaches,†2019 Open Conf. Electr. Electron. Inf. Sci. eStream 2019 - Proc., pp. 1–4, 2019, doi: 10.1109/eStream.2019.8732167.
M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,†IEEE Access, vol. 8, pp. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222.
Karsito and S. Susanti, “Klasifikasi Kelayakan Peserta Pengajuan Kredit Rumah Dengan Algoritma Naïve Bayes Di Perumahan Azzura Residencia,†J. Teknol. Pelita Bangsa, vol. 9, pp. 43–48, 2019.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).