Prediction of Bandung City Traffic Classification Using Machine Learning and Spatial Analysis
DOI:
https://doi.org/10.30865/mib.v6i4.4538Keywords:
Classification, Traffic Congestion, Artificial Neural Network, Naïve Bayes, Simple KrigingAbstract
This research proposes a visualization of Bandung City congestion map classification using machine learning and kriging interpolation methods. The machine learning methods used are Naive Bayes and Artificial Neural Network (ANN) for the congestion classification process. The kriging interpolation used is simple kriging to create a spatial location map visualization on the congestion classification prediction. They are based on the classification results of both methods. Naïve Bayes is ideal supervised learning for classification, while ANN is ideal unsupervised learning for prediction. The classification was performed on arterial and collector roads with 11 intersections that are congestion points. The data used is traffic counting data for Bandung City in April 2022. The congestion classification is divided into four categories based on the congestion level. This category division causes data imbalance, so the Random Oversampling technique is used to overcome data imbalance. The result is that the ANN method has better performance, with an accuracy rate of 93% and an RMSE value of 0.9746, while the Naïve Bayes method has an accuracy rate of 90% and an RMSE value of 0.9381. The resulting classification map shows that in April 2022, the southern area of Bandung City experienced the highest congestion compared to the northern, western and southern areas. This research provides the best algorithm between the two methods. It provides information on congestion in Bandung City by visualizing the congestion classification map to reduce traffic congestion in the city of Bandung.References
N. E. Neviana and D. K. Soedarsono, “KEGIATAN KOMUNIKASI ATCS DALAM MENGURANGI PELANGGARAN LALU LINTAS DI KOTA BANDUNG ( Studi Deskriptif ATCS Kota Bandung Dalam Mengurangi Pelanggaran Lalu Lintas Menggunakan Pengeras Suara di Persimpangan ),†Proceeding of International Conference on Communication, Culture and Media Studies (CCCMS), vol. 7, no. 2, pp. 6969–6983, 2020.
S. Cerdas, B. Konsep, F. Logic, U. Evaluasi, and K. Karyawan, “Email : roy.mubarak@eresha.ac.id,†vol. XI, no. 02, pp. 36–40, 2017.
Y. Xing, X. Ban, X. Liu, and Q. Shen, “Large-scale traffic congestion prediction based on the symmetric extreme learning machine cluster fast learning method,†Symmetry (Basel), vol. 11, no. 6, pp. 1–19, 2019, doi: 10.3390/sym11060730.
G. D. Ramady and R. G. Wowiling, “Analisa Prediksi Laju Kendaraan Menggunakan Metode Linear Regresion Sebagai Indikator Tingkat Kemacetan,†Jurnal Sekolah Tinggi Teknologi Mandala, vol. 12, no. 2, pp. 22–28, 2017.
Y. Liu and H. Wu, “Prediction of road traffic congestion based on random forest,†Proceedings - 2017 10th International Symposium on Computational Intelligence and Design, ISCID 2017, vol. 2, pp. 361–364, 2018, doi: 10.1109/ISCID.2017.216.
R. More, A. Mugal, S. Rajgure, R. B. Adhao, and V. K. Pachghare, “Road traffic prediction and congestion control using Artificial Neural Networks,†International Conference on Computing, Analytics and Security Trends, CAST 2016, pp. 52–57, 2017, doi: 10.1109/CAST.2016.7914939.
M. Taamneh, S. Taamneh, and S. Alkheder, “Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks,†International Journal of Injury Control and Safety Promotion, vol. 24, no. 3, pp. 388–395, 2017, doi: 10.1080/17457300.2016.1224902.
D. Dauletbak and J. Woo, “Big data analysis and prediction of traffic in Los Angeles,†KSII Transactions on Internet and Information Systems, vol. 14, no. 2, pp. 841–854, 2020, doi: 10.3837/tiis.2020.02.021.
G. R. Septianto, F. F. Mukti, M. Nasrun, and A. A. Gozali, “Jakarta congestion mapping and classification from twitter data extraction using tokenization and naïve bayes classifier,†Proceedings - APMediaCast: 2015 Asia Pacific Conference on Multimedia and Broadcasting, no. April, pp. 14–19, 2015, doi: 10.1109/APMediaCast.2015.7210266.
H. al Najada and I. Mahgoub, “Big vehicular traffic Data mining: Towards accident and congestion prevention,†2016 International Wireless Communications and Mobile Computing Conference, IWCMC 2016, pp. 256–261, 2016, doi: 10.1109/IWCMC.2016.7577067.
F. Falahatraftar, S. Pierre, and S. Chamberland, “A Centralized and Dynamic Network Congestion Classification Approach for Heterogeneous Vehicular Networks,†IEEE Access, vol. 9, pp. 122284–122298, 2021, doi: 10.1109/ACCESS.2021.3108425.
S. S. Prasetiyowati, Y. Sibaroni, and S. Carolina, “Prediction and Mapping of Air Pollution in Bandung Using Generalized Space Time Autoregressive and Simple Kriging,†2020.
J. Luengo, D. GarcÃa-Gil, S. RamÃrez-Gallego, S. GarcÃa, and F. Herrera, “Big Data Preprocessing Enabling Smart Data,†2020.
R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,†Jurnal Teknologi Rekayasa, vol. 3, no. 1, p. 89, 2018, doi: 10.31544/jtera.v3.i1.2018.89-98.
H. Hardiani, “Analisis Derajat Kejenuhan dan Biaya Kemacetan Pada Ruas Jalan Utama di Kota Jambi,†Jurnal Perspektif Pembiayaan dan Pembangunan Daerah , vol. 2, no. 4, 2016.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,†Computer Engineering, Science and System Journal, vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
A. Pranolo, Universitas Ahmad Dahlan, Institute of Electrical and Electronics Engineers. Indonesia Section, and Institute of Electrical and Electronics Engineers, 2018 International Symposium on Advanced Intelligent Informatics (SAIN) : “Revolutionize Intelligent Informatics Spectrum for Humanity†: proceeding : August 29-30, 2018, Yogyakarta, Indonesia.
R. Dwi Fitriani, H. Yasin, D. Statistika, and F. Sains dan Matematika, “PENANGANAN KLASIFIKASI KELAS DATA TIDAK SEIMBANG DENGAN RANDOM OVERSAMPLING PADA NAIVE BAYES (Studi Kasus: Status Peserta KB IUD di Kabupaten Kendal),†vol. 10, no. 1, pp. 11–20, 2021.
H. Zhang, J. Wei, X. Gao, and J. Hu, “The study of traffic flow model based on cellular automata and Naive Bayes,†International Journal of Modern Physics C, vol. 30, no. 5, pp. 1–14, 2019, doi: 10.1142/S0129183119500347.
G. Wang and J. Kim, “The prediction of traffic congestion and incident on urban road networks using Naive Bayes classifier,†ATRF 2016 - Australasian Transport Research Forum 2016, Proceedings, no. November, pp. 1–14, 2016.
S. Euis, U. Yuyun, and v. Apriade, “Penerapan Algoritma Artificial Neural Network untuk Klasifikasi Opini Publik Terhadap Covid-19,†Generation Journal, vol. 5, no. 2, pp. 109–118, Jul. 2021, doi: 10.29407/gj.v5i2.16125.
S. H. Wang, K. Muhammad, J. Hong, A. K. Sangaiah, and Y. D. Zhang, “Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization,†Neural Computing and Applications, vol. 32, no. 3, pp. 665–680, Feb. 2020, doi: 10.1007/s00521-018-3924-0.
A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),†Mar. 2018, [Online]. Available: http://arxiv.org/abs/1803.08375
A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data imbalance and solutions for a data democracy,†in Data Democracy: At the Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering, Elsevier, 2020, pp. 83–106. doi: 10.1016/B978-0-12-818366-3.00005-8.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).