Penerapan k-Means Clustering Berdasarkan Analisis RFM Terhadap Segmentasi Pembeli untuk Meningkatkan Strategi CRM
DOI:
https://doi.org/10.30865/mib.v6i4.4472Keywords:
CRM, Customer Segmentation, k-Means, RFM, Data MiningAbstract
An industry requires a good strategy in running its business. Saga Bako is a small industry that sells various types of tobacco and its equipment. However, Saga Bako has not yet implemented a Customer Relationship Management (CRM) strategy in its service to buyers. It is necessary to segment customers to find out less profitable buyers and buyers who provide large profits. The use of data mining also contributes when segmenting customers through the use of purchase data. The methodology applied in this research is CRISP-DM with purchase data at Saga Bako from January to March 2022. The k-means algorithm is applied in the formation of clusters based on the Recency, Frequency, Monetary (RFM) model, with the help of Weka 3.8.5 tools. The Elbow method is used to determine the best number of clusters (k). The results obtained are from 47 buyers with 663 transaction data divided into three clusters, 26 low potential buyers, ten medium potential buyers, and 11 high potential buyers.References
B. Setyaleksana, S. Suharyono, and E. Yulianto, “Pengaruh Customer Relationship Management (CRM) Terhadap Kepuasan dan Loyalitas Pelanggan (Survei pada Pelanggan GraPARI Telkomsel di Kota Malang),†J. Adm. Bisnis, vol. 46, no. 1, pp. 45–51, 2017.
S. Dewi Astria, “Penerapan Algoritma Fuzzy C-Means Untuk Clustering Pelanggan Pada CV. Mataram Jaya Bawen,†J. Eksplora Inform., vol. 6, no. 2, pp. 169–178, 2017.
A. Octa, “Literature Review: Meningkatkan Kepuasan Pelanggan Di Bengkel Resmi Menggunakan Sistem Manajemen Pelanggan Elektronik,†Inform. J. Ilmu Komput., vol. 15, no. 1, pp. 39–50, 2019.
A. Amelia and R. Ronald, Paradigma Nilai Pelanggan: Produk vs Jasa. Yayasan Kita Menulis, 2021.
A. R. Tita, S. A. Ithriah, and A. A. Arifiyanti, “Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model Rfm Pada Cv Tita Jaya,†J. Inform. dan Sist. Inf., vol. 1, no. 3, pp. 699–708, 2020.
A. Febriani and S. A. Putri, “Segmentasi Konsumen Berdasarkan Model Recency, Frequency, Monetary dengan Metode K-Means,†JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, pp. 52–57, 2020.
B. C. Laksono and I. Y. Wulansari, “Pemodelan Dan Penerapan Metode Rfm Pada Estimasi Nilai Konsumen (Customer Lifetime Value) Menggunakan K-Means Clustering Machine Learning,†Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 1277–1285, 2021.
B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi Rfm Model Dan Teknik Clustering,†J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, 2018.
B. Rizki, N. G. Ginasta, M. A. Tamrin, and A. Rahman, “Customer Loyality Segmentation On Point Of Sale System Using Recency-Frequency-Monetary (RFM) and K-Means,†J. Online Inform., vol. 5, no. 2, pp. 130–136, 2020.
L. Zahrotun, “Implementation Of Data Mining Technique For Customer Relationship Management (CRM) On Online Shop Tokodiapers.com With Fuzzy C-Means Clustering,†Proc. - 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2017, vol. 2, pp. 299–303, 2018.
A. J. Christy, A. Umamakeswari, L. Priyatharsini, and A. Neyaa, “RFM Ranking – An Effective Approach To Customer Segmentation,†J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 10, pp. 1251–1257, 2021.
S. A. Sutresno, A. Iriani, and E. Sediyono, “Metode K-Means Clustering dengan Atribut RFM untuk Mempertahankan Pelanggan,†J. Tek. Inform. dan Sist. Inf., vol. 4, pp. 433–440, 2018.
N. H. Harani, C. Prianto, and F. A. Nugraha, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,†J. Manaj. Inform., vol. 10, no. 2, pp. 133–146, 2020.
A. Wibowo and A. R. Handoko, “Segmentasi Pelanggan Ritel Produk Farmasi Obat Menggunakan Metode Data Mining Klasterisasi Dengan Analisis Recency Frequency Monetary (RFM) Termodifikasi,†J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 573–580, 2020.
P. C. Ncr et al., “Crisp-Dm,†SPSS inc, vol. 78, pp. 1–78, 2000, [Online]. Available: http://www.crisp-dm.org/CRISPWP-0800.pdf.
F. Effendy and P. Purbandini, “Klasifikasi Rumah Tangga Miskin Menggunakan Ordinal Class Classifier,†J. Nas. Teknol. dan Sist. Inf., vol. 4, no. 1, pp. 30–36, 2018.
R. R. Putra and C. Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-means,†J. Inf. Technol. Comput. Sci., vol. 1, pp. 72–77, 2018.
M. Wahyudi, Masitha, R. Saragih, and Solikhun, Data Mining: Penerapan Algoritma K-Means Clustering dan K-Medoids Clustering. Yayasan Kita Menulis, 2020.
D. O. Dacwanda and Y. Nataliani, “Implementasi k-Means Clustering Untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan,†Aiti, vol. 18, no. 2, pp. 125–138, 2021.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).