Depression Detection on Social Media Twitter Using Long Short-Term Memory

Authors

  • Hafshah Haudli Windjatika Telkom University, Bandung
  • Warih Maharani Telkom University, Bandung

DOI:

https://doi.org/10.30865/mib.v6i4.4457

Keywords:

Depression Detection, Twitter, Word2Vec, LSTM (Long Short-Term Memory)

Abstract

Mental health problems in the world, especially in Indonesia are still significant. According to the Ministry of Health of the Republic of Indonesia stated that depression is experienced by adolescents from the age of 15 to 24 years. The depression experienced by a person is sometimes not realized by the sufferer, so social media becomes an intermediary to express feelings in text form. From the available data, this case pushes the research to detect depression disorder. Detecting depression performs to know the Twitter user who experiences depression. Data used from 159 Twitter users for every username is taken from 100 tweets. In this research, we use Word2Vec and LSTM (Long Short-Term Memory) features as the classification method. The Word2Vec works in converting data as vector and seeing the relation for every word. LSTM is chosen since the dataset is used to collect tweet from the past tense and this method be able to save the data from the past doing prediction. The classification is performed by processing the data trained such as tweeting which becomes a model for processing the data trained test. Based on the test result produce the accuracy data is 77.95% and the F1-Score is 57.14%.

References

A. A. Rachmawati, “Darurat Kesehatan Mental bagi Remaja,†Egsa Ugm, 2020.

“Situasi Kesehatan Jiwa di Indonesia,†Kementrian Kesehatan Republik Indonesia, 2019. https://pusdatin.kemkes.go.id/article/view/20031100001/situasi-kesehatan-jiwa-di-indonesia.html (accessed Oct. 16, 2021).

B. A. Primack et al., “Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among U.S. young adults,†Comput. Human Behav., vol. 69, 2017, doi: 10.1016/j.chb.2016.11.013.

A. A. Al Aziz, “Hubungan Antara Intensitas Penggunaan Media Sosial dan Tingkat Depresi pada Mahasiswa,†Acta Psychol., vol. 2, no. 2, 2020, doi: 10.21831/ap.v2i2.35100.

M. L. Joshi and N. Kanoongo, “Depression detection using emotional artificial intelligence and machine learning: A closer review,†Mater. Today Proc., vol. 58, 2022, doi: 10.1016/j.matpr.2022.01.467.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,†J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

F. Sodik, B. Dwi, and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,†J. Mat., vol. 3, 2020.

W. Hastomo and A. Satyo, “Long Short Term Memory Machine Learning Untuk Memprediksi Akurasi Nilai Tukar IDR Terhadap USD,†Pros. SeNTIK, vol. 3, no. 1, pp. 115–124, 2019.

W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,†J. MEDIA Inform. BUDIDARMA, vol. 5, no. 3, 2021, doi: 10.30865/mib.v5i3.3111.

S. Kusumadewi and H. Wahyuningsih, “Model Sistem Pendukung Keputusan Kelompok untuk Penilaian Gangguan Depresii, Kecemasan dan Stress Berdasarkan DASS-42,†J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, 2020, doi: 10.25126/jtiik.2020721052.

H. A. Maulana, “Psychological Impact of Online Learning during the COVID-19 Pandemic: A Case Study on Vocational Higher Education,†Indones. J. Learn. Educ. Couns., vol. 3, no. 2, 2021, doi: 10.31960/ijolec.v3i2.833.

A. Pragota, “Berkenalan dengan Twint.†https://learn.nural.id/course/data-science/twitter-scrap/berkenalan-dengan-twint (accessed Jun. 28, 2022).

Y. R. Sipayung and R. Sulistyowati, “Identifikasi Komentar Negatif Berbahasa Indonesia Pada Instagram Dengan Metode K-Means,†Multimatrix, vol. 2, no. 1, 2020.

R. Indira and W. Maharani, “Personality Detection on Social Media Twitter Using Long Short-Term Memory with Word2Vec,†2021. doi: 10.1109/COMNETSAT53002.2021.9530820.

M. Rusli, M. R. Faisal, and I. Budiman, “Ekstraksi Fitur Menggunakan Model Word2Vec Untuk Analisis Sentimen Pada Komentar Facebook,†Semin. Nas. Ilmu Komput., vol. 2, no. January 2019, 2019.

A. Nurdin, B. Anggo Seno Aji, A. Bustamin, and Z. Abidin, “PERBANDINGAN KINERJA WORD EMBEDDING WORD2VEC, GLOVE, DAN FASTTEXT PADA KLASIFIKASI TEKS,†J. Tekno Kompak, vol. 14, no. 2, 2020, doi: 10.33365/jtk.v14i2.732.

B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, “A survey on long short-term memory networks for time series prediction,†in Procedia CIRP, 2021, vol. 99. doi: 10.1016/j.procir.2021.03.088.

S. Dobilas, “LSTM Recurrent Neural Networks — How to Teach a Network to Remember the Past,†Medium. https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e (accessed Jun. 28, 2022).

Julpan, E. B. Nababan, and M. Zarlis, “Analisis Fungsi Aktivasi Sigmoid Biner Dan Sigmoid Bipolar Dalam Algoritma Backpropagation Pada Prediksi Kemampuan Siswa,†J. Teknovasi, vol. 02, 2015.

S. Ghimire, Z. M. Yaseen, A. A. Farooque, R. C. Deo, J. Zhang, and X. Tao, “Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks,†Sci. Rep., vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-96751-4.

A. E. MINARNO, M. H. C. MANDIRI, and M. R. ALFARIZY, “Klasifikasi COVID-19 menggunakan Filter Gabor dan CNN dengan Hyperparameter Tuning,†ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 3, 2021, doi: 10.26760/elkomika.v9i3.493.

Downloads

Published

2022-10-25