Analisis Sentiment Pelanggan Terhadap Penilaian Produk Pada Toko Online Shop Amreta Menggunakan Metode Naïve Bayes Classification

Authors

  • Alisia Silver Stone Universitas Sriwijaya, Palembang
  • Fathoni Fathoni Universitas Sriwijaya, Palembang

DOI:

https://doi.org/10.30865/mib.v6i3.4436

Keywords:

Sentiment, Online Shop, Shopee, Naïve Bayes, E-Commerce

Abstract

Sentiment analysis or opinion mining is an analysis that aims to see the sentiment of people or groups regarding certain entities. The sentiments expressed by society can be in positive, negative and neutral form. One media that can be given an opinion by the public is in the e-commerce application,  namely the shopee application, shopee has a comment or assessment feature on the product that has been purchased. Toko which was used as a sample of researchersis an amreta online shop store  , based on the results of the identification of the problem, it was found that the fact was that many comments did not match the stars given so it can be said that the rating cannot represent that the store's performance is good or not. Therefore, to increase the profit of shop work, the amreta still needs to evaluate the store. In conducting an evaluation, the store needs to classify positive, negative or neutral comments. Analysis of customer sentiment towards product assessments in amreta online shop stores using the naive bayes classification method. The use of test data in this study was obtained from the sentiment of amreta online shop consumers as much as 2014 data,then the data was processed through  the data cleaning process  resulting in net data of 1899 data. Furthermore, the data preprocessing process is divided into 3 stages, namely Tokenize Data, Transform case and Stopword removal. After that, the analysis of data for the automatic labeling stage using Text Vectorize from the process obtained data division into 3 data groups of 71% or 1343 positive data, 3% or 52 negative data and 26% or 504 neutral data.  furthermore, it is processed using rapidminer tools while for operators in the form of algorithms using the Sentiment Naïve Bayes Classification model  through automatic calculations.  The results of the study can be concluded that the test data obtained have an accuracy level of 97.16% using the Naive Bayes Classification model.

References

Zuhri, F. N., & Alamsyah, A. (2017). Menggunakan Naïve Bayes Classifier Di Forum Kaskus Publik Sentiment Analysis Of Smartfren Brand Using Naïve Bayes Classfier On Kaskus Forum. E- Proceeding of Management, 4(1), 242–251.

Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng - Seri Informatika, 3(1), 50. https://doi.org/10.35314/isi.v3i1.335

Haryanto, D. J., Muflikhah, L., & Fauzi, M. A. (2018). Analisis Sentimen Review Barang Berbahasa Indonesia Dengan Metode Support Vector Machine Dan Query Expansion. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(9), 2909–2916.

Qisthiano, M. R., Kurniawan, T. B., Negara, E. S., & Akbar, M. (2021). Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes. Jurnal Media Informatika Budidarma, 5, 987–994. https://doi.org/10.30865/mib.v5i3.3030

Rozi, I., Pramono, S., & Dahlan, E. (2012). Implementasi Opinion Mining (Analisis Sentimen) Untuk Ekstraksi Data Opini Publik Pada Perguruan Tinggi. Jurnal EECCIS, 6(1), 37–43.

Novendri, R., Callista, A. S., Pratama, D. N., & Puspita, C. E. (2020). Sentiment Analysis of YouTube Movie Trailer Comments Using Naïve Bayes. Bulletin of Computer Science and Electrical Engineering, 1(1), 26–32. https://doi.org/10.25008/bcsee.v1i1.5

Novianti, D. (2019). Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner. Paradigma: Jurnal Komputer Dan Informatika Universitas Bina Sarana Informatika, 21(2), 143–148. https://doi.org/10.31294/p.v20i2

Mardi, Y. (2017). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Edik Informatika, 2(2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465

Lestari, A. R. T., Perdana, R. S., & Fauzi, M. A. (2017). Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Näive Bayes dan Pembobotan Emoji. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(12), 1718–1724. http://j-ptiik.ub.ac.id

Aprilia, D., Aji Baskoro, D., Ambarwati, L., & Wicaksana, I. W. S. (2013). Belajar Data Mining Dengan Rapid Minner. https://doi.org/-

Asiyah, A. (2021). Pengaruh Penilaian Produk Dan Ongkos Kirim Terhadap Keputusan Pembelian Konsumen Shopee Di Kabupaten Ponorogo. IAIN Ponorogo.

Chandani, V. (2015). Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film. Journal of Intelligent Systems, 1(1), 56–60.

Dillak, R. Y., Pangestuty, D. M., & Bintiri, M. G. (2012). Klasifikasi Jenis Musik Berdasarkan File Audio Menggunakan Jaringan Syaraf Tiruan Learning Vector Quantization. Seminar Nasional Informatika, 2012(semnasIF), 122–125.

Dupakuntla, V. B. P., Veeraboina, H., Reddy, M. V. K., Satyanarayana, M. M., & Sameer, Y. S. (2020). Learning Based Approach For Hindi Text Sentiment Analysis Using. INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY, 7(8).

Pratama, Y., Roberto Tampubolon, A., Diantri Sianturi, L., Diana Manalu, R., & Frietz Pangaribuan, D. (2019). Implementation of Sentiment Analysis on Twitter Using Naïve Bayes Algorithm to Know the People Responses to Debate of DKI Jakarta Governor Election. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012102

Puspitasari, N., Tampubolon, W., & Taruk, M. (2021). Analisis Metode EUCS Dan Hot-Fit Dalam Mengevaluasi Penerapan Sistem Informasi Manajemen Kepegawaian (Simpeg). Jurnal SITECH, 4(1).

Downloads

Published

2022-07-25

Issue

Section

Articles