Sentiment Analysis Pada Masyarakat Terhadap LRT Kota Palembang Menggunakan Metode Improved K-Nearest Neighbor

Authors

  • Siti Nur Arafah Universitas Sriwijaya, Palembang
  • Fathoni Fathoni Universitas Sriwijaya, Palembang

DOI:

https://doi.org/10.30865/mib.v6i3.4434

Keywords:

Sentiment Analysis, K-Nearest Neighbor, Light Rail Transit (LRT)

Abstract

The LRT is a sustainable fast transportation system, which was built to overcome the congestion problem in the city of Palembang. In order to attract people's interest to switch to using public transportation compared to private transportation, one of them is by improving the quality of services provided. Sentiment analysis is used to classify positive and negative opinions on users of Palembang City LRT transportation services. In addition to retrieving data through crawling data on tweet data, the researchers also distributed questionnaires. In conducting the classification process of sentiment analysis, this study uses the Improved K-Nearest Neighbor method which is a modification of the K-Nearest Neighbor method. The results of this research are testing and training data on 1617 data records and the highest accuracy of 74.07% on 90% training data and 10% testing data, with 70% precision, 56% recall and 59% f-1 score, while the lowest accuracy with an accuracy of 63.04% on 50% training data and 50% testing data, with 44% precision, 42% recall and 42% f-1 score

References

R. S. Salim, “Perubahan Beban Di Feeder Dc Switchgear Lrt Palembang,†2021, [Online]. Available: http://repository.univ-tridinanti.ac.id/2985/.

D. Widiyanti, “Pengembangan Park and Ride untuk Meningkatkan Pelayanan Angkutan LRT Kota Palembang,†Jurnal Penelitian Transportasi Darat., vol. 21, pp. 103–116, 2019, doi:10.25104/jptd.v2li2.1562.

W. M. Baihaqi et al., “Kombinasi K-Means Dan Support Vector Machine ( Svm ) Untuk K-Means And Support Vector Machine ( Svm ) Combination To Predict Sara Elements On Tweet,†vol. 7, no. 3, pp. 501–510, 2020, doi: 10.25126/jtiik.202072126.

W. Oktinas, “Analisis Sentimen Pada Acara Televisi menggunakan Improved K-Nearest Neighbor,†Program Studi Teknologi Informasi, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara, Medan, vol.1, no.2, pp. 6-38, 2017.

G. A. Buntoro, T. B. Adji, and A. E. Purnamasari, “Sentiment Analysis Twitter dengan Kombinasi Lexicon Based dan Double Propagation,†CITEE, pp.7-8, 2015.

B. Li and L. Han, “Distance weighted cosine similarity measure for text classification,†Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8206 LNCS, pp. 611–618, 2013, doi: 10.1007/978-3-642-41278-3_74.

Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification,†Proc. - 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2017, vol. 2018-Janua, pp. 294–298, 2018, doi: 10.1109/ICITISEE.2017.8285514.

N. Octaviani Faomasi Daeli, “Sentiment Analysis on Movie Reviews Using Information Gain and K-Nearest Neighbor,†Open Access J Data Sci Appl, vol. 3, no. 1, pp. 1–007, 2020, doi: 10.34818/JDSA.2020.3.22.

A. Salam, J. Zeniarja, and R. S. U. Khasanah, “Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia),†Pros. SINTAK, pp. 480–486, 2018.

A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor,†JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018, doi: 10.14421/jiska.2018.31-01.

A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.

A. Nurzahputra, M. A. Muslim, and M. Khusniati, “Penerapan Algoritma K-Means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa,†Techno.Com, vol. 16, no. 1, pp. 17–24, 2017, doi: 10.33633/tc.v16i1.1284.

C. Juditha, “Sentimen Dan Imparsialitas Isi Berita Tentang Ahok Di Portal Berita Online,†J. Penelit. Komun. dan Pembang., vol. 18, no. 1, p. 57, 2017, doi: 10.31346/jpkp.v18i1.839.

N. L. Ratniasih, M. Sudarma, and N. Gunantara, “Penerapan Text Mining Dalam Spam Filtering Untuk Aplikasi Chat,†Maj. Ilm. Teknol. Elektro, vol. 16, no. 3, p. 13, 2017, doi: 10.24843/mite.2017.v16i03p03.

G. Divva, M. Zulma, and N. Chamidah, “Perbandingan Metode Klasifikasi Naive Bayes , Decision Tree Dan K- Nearest Neighbor Pada Data Log Firewall,†no. April, pp. 679–688, 2021.

K. A. Ghofari, N. F. Rozi, and L. Selmakaramy, “Pembuatan Sistem Pencarian Hadis dengan menggunakan Metode Pembobotan TF-IDF,†Seminar Nasional Teknik Elektro, Sistem Informasi dan Teknik Informatika, volume 1, pp. 207–212, 2021.

K. Telaumbanua, S. Sudarto, F. Butar-Butar, and P. S. Bilqis, “Identifikasi Sampah Berdasarkan Tekstur Dengan Metode GLCM dan GLRLM Menggunakan Improved KNN,†Explorer (Hayward)., vol. 1, no. 2, pp. 45–52, 2021, doi: 10.47065/explorer.v1i2.94.

D. Rustiana and N. Rahayu, “Analisis Sentimen Pasar Otomotif Mobil: Tweet Twitter Menggunakan Naïve Bayes,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 1, pp. 113–120, 2017, doi: 10.24176/simet.v8i1.841.

M. Z. Naf’an, A. Burhanuddin, and A. Riyani, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen,†J. Linguist. Komputasional, vol. 2, no. 1, pp. 23–27, 2019.

R. R. A. Siregar, F. A. Sinaga, and R. Arianto, “Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model,†Comput. J. Comput. Sci. Inf. Syst., vol. 1, no. 2, p. 171, 2017, doi: 10.24912/computatio.v1i2.1014.

A. Aziz, F. Fauziah, and I. Fitri, “Analisis Sentimen Terhadap Kebijakan Pemerintah Tentang Larangan Mudik Hari Raya Idulfitri di Indonesia Tahun 2021 Menggunkan Metode Naïve Bayes,†J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 2, pp. 842–851, 2021, [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/381.

A. Y. Pratama, Y. Umaidah, and A. Voutama, “Analisis Sentimen Media Sosial Twitter Dengan Algoritma K-Nearest Neighbor dan Seleksi Fitur Chi-Square (Kasus Omnibus Law Cipta Kerja),†Sains Komput. Inform., vol. 5, no. 2, pp. 897–910, 2021, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/386/365.

Downloads

Published

2022-07-25

Issue

Section

Articles