Klasterisasi Perguruan Tinggi Swasta di Madura Berdasarkan Kinerja Sumber Daya Manusia dan Mahasiswa Menggunakan Metode K-Means Clustering
DOI:
https://doi.org/10.30865/mib.v6i4.4431Keywords:
Data Mining, K-Means Clustering, Private UniversitiesAbstract
The number of private universities in Indonesia in 2020 is 3,044 private universities, in East Java 328 private universities and in Madura 30 private universities. The number of private universities in Indonesia causes intense competition. Colleges should strive to maintain and improve performance in order to ensure their activities. Therefore, it is necessary to do or group private universities based on the performance of human resources and students to encourage these universities to improve their performance. The grouping of private universities is carried out using the k-clustering method which groups data into several clusters based on data groups which are. The results of this study, the grouping of private universities in Madura into 3 clusters, namely: Cluster 1 there are 4 private universities, Cluster 2 there are 7 private universities, and Cluster 3 there are 19 private universities.References
S. Nawangsari and T. Sugiarato, “Analisis Korelasi Kualitas Web Terhadap Kepuasaan Mahasiswa pada Salah Satu Perguruan Tinggi Swasta di Kopertis Wilayah Tiga,†pp. 1–9, 2013.
D. HANDINI, F. HIDAYAT, A. N. R. ATTAMIMI, D. A. V. PUTRI, M. F. ROUF, and N. R. ANJANI, Higher Education Statistics 2020. 2020.
K. Pendidikan, D. A. N. Teknologi, D. Jenderal, and P. Tinggi, “Kementerian pendidikan, kebudayaan, riset, dan teknologi,†no. 021, 2021.
K. D. A. N. Prosedur, “AKREDITASI PROGRAM STUDI,†2019.
I. Virgo, S. Defit, and Y. Yunus, “Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering,†vol. 2, pp. 23–28, 2020, doi: 10.37034/jsisfotek.v2i1.17.
D. G. Ramadhan, I. Prihatini, and F. Liantoni, “Analisis Clustering Pengelompokan Penjualan Paket Data Menggunakan Metode K-Means,†J. Tek. Inform., vol. 13, no. 1, pp. 33–38, 2021.
O. Purwaningrum, Y. Y. Putra, and A. A. Arifiyanti, “Penentuan Kelompok Status Gizi Balita dengan Menggunakan Metode K-Means,†J. Ilm. Teknol. Inf. Asia, vol. 15, no. 2, pp. 129–136, 2021.
N. Mirantika, A. Tsamratul’Ain, and F. D. Agnia, “PENERAPAN ALGORITMA K-MEANS CLUSTERING UNTUK PENGELOMPOKAN PENYEBARAN COVID-19 DI PROVINSI JAWA BARAT,†J. NUANSA Inform., vol. 15, pp. 92–98, 2021.
S. A. Rahmah, “KLASTERISASI POLA PENJUALAN PESTISIDA MENGGUNAKAN METODE K-MEANS CLUSTERING ( STUDI KASUS DI TOKO JUANDA TANI KECAMATAN HUTABAYU RAJA ),†vol. 1, no. 1, pp. 1–5, 2020.
R. Ordila, R. Wahyuni, Y. Irawan, and M. Y. Sari, “PENERAPAN DATA MINING UNTUK PENGELOMPOKAN DATA REKAM MEDIS PASIEN BERDASARKAN JENIS PENYAKIT DENGAN ALGORITMA CLUSTERING ( Studi Kasus : Poli Klinik PT . Inecda ),†vol. 9, no. 2, pp. 148–153, 2020.
R. P. Primanda, A. Alwi, D. Mustikasari, P. T. Informatika, F. Teknik, and U. M. Ponorogo, “DATA MINING SELEKSI SISWA BERPRESTASI UNTUK MENENTUKAN KELAS UNGGULAN MENGGUNAKAN METODE K-MEANS CLUSTERING ( Studi Kasus di MTS Darul Fikri ),†pp. 88–101, 2021.
L. Masyfufah and I. Artikel, “CLUSTERING GUNA MENUNJANG PROGRAM JAMINAN BALONG BENDO SIDOARJO CLUSTERING BPJS ’ S INPATIENTS BY USING K -MEANS CLUSTERING METHOD TO SUPPORT THE NATIONAL HEALTH INSURANCE PROGRAM AT ANWAR MEDIKA HOSPITAL BALONG BENDO SIDOARJO,†J. WIYATA, pp. 8–22, 2021.
A. Rachman and M. R. Hidayat, “Klasterisasi Sumber Penyebaran Virus Covid-19 dengan Menggunakan,†vol. 19, no. 02, pp. 140–150, 2020.
S. W. Nengsih, I. Alfian, D. Aji, and S. Anwar, “ANALISIS PENGELOMPOKAN PENENTUAN JURUSAN SISWA SMA MENGGUNAKAN METODE K-MEANS CLUSTERING,†J. BETRIK, no. 03, pp. 242–248, 2021.
Y. Y. Prasetya, A. Faisol, and N. Vendyansah, “SISTEM INFORMASI GEOGRAFIS HASIL PRODUKSI PADI DI KABUPATEN MALANG MENGGUNAKAN METODE K-MEANS CLUSTERING,†JATI, vol. 5, no. 2, pp. 806–814, 2021.
F. Indriyani and E. Irfiani, “Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means,†JUITA J. Inform., vol. 7, no. 2, p. 109, 2019, doi: 10.30595/juita.v7i2.5529.
G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,†J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).