Sistem Klasifikasi Penjualan Produk Alat Listrik Terlaris Untuk Optimasi Pengadaan Stok Menggunakan Naïve Bayes
DOI:
https://doi.org/10.30865/mib.v6i4.4418Keywords:
Classification, Naïve Bayes, Stock Optimization, Data MiningAbstract
Optimization is a process of solving a problem so that it can provide the best conditions that can provide a maximum or minimum value. In a business, optimization of stock procurement is an important thing, including in terms of product sales. If the stock of a product is empty then the sales potential decreases. Therefore we need a method to optimize the stock so that it can supply consumer demand and ultimately increase sales. Data mining can be applied in the sales system by creating a sales classification model for the best-selling products. In this study, the sales classification of the best-selling products at electronic stores was carried out using Naïve Bayes. The data used in this study is data on sales of electronic products for 3 months. In the early stages, preprocessing is carried out, namely by encoding labels. Model testing was carried out using percentage split and cross validation with several trials. Through the use of percentage split, the best accuracy is obtained at 93.3% with a comparison of 30% of test data and 70% of training data. The best accuracy using cross validation was obtained by 84% for 7-fold. The classification system that has been created is capable of classifying the best-selling products every quarter of a year. Through the use of the best-selling product classification system, the store can find out the best-selling product stock so that the stock is not empty. Thus the procurement of store stock can be more optimal and sales will increase.
References
A. S. Ismasari Nawangsih, “Penerapan Algoritma Naive Bayes Untuk Menentukan Klasifikasi Produk Terlaris Pada Penjualan Pulsa,†J. Sigma, vol. 10, no. 1, pp. 195–207, 2020.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,†J. Teknoinfo, vol. 14, no. 2, p. 115, 2020.
B. Y. A. Pratama and H. A. Yuniarto, “Perancangan Proses Implementasi Machine Learning Dalam Maintenance Management Untuk Mencegah Derating,†J@ti Undip J. Tek. Ind., vol. 16, no. 2, pp. 134–142, 2021.
H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,†Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018.
D. Setyawan and A. Suradi, “Implementasi Web Service Dan Analisis Kinerja Algoritma Klasifikasi Data Mining Untuk Memprediksi Diabetes Mellitus,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 2, p. 701, 2017.
A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,†J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019.
E. L. Middleton, “Klasifikasi Data Penjualan Alat Tulis Kantor (Atk) Terlaris Untuk Optimasi Strategi Pemasaran Di Toko Citramedia Menggunakan Metode Naive Bayes,†Sigma, vol. 10, pp. 138–152, 2019.
I. Yolanda and H. Fahmi, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT . Nippon Indosari Corpindo Tbk Menggunakan Metode K-Nearest Neighbor,†JIKOMSI (Jurnal Ilmu Komput. dan Sist. Informasi), vol. 3, no. 3, pp. 9–15, 2021.
I. Nawangsih, A. Setyaningsih, P. Studi, T. Informatika, F. Teknik, and D. Mining, “Penerapan Algoritma Naive Bayes Untuk Menentukan Klasifikasi Produk Terlaris Pada Penjualan Pulsa,†Incomtech, vol. 9, no. 1, pp. 39–45, 2020.
A. Zakir, Y. Ndruru, E. Hadinata, and ..., “Penerapan Data Mining Untuk Klasifikasi Data Penjualan Makanan Terlaris Dengan Algoritma C45,†J. Ilm. Teknol. …, vol. 2, pp. 7–12, 2020.
L. J. Muhammad, M. M. Islam, S. S. Usman, and S. I. Ayon, “Predictive Data Mining Models for Novel Coronavirus (COVID-19) Infected Patients’ Recovery,†SN Comput. Sci., vol. 1, no. 4, pp. 1–7, 2020.
A. Alfani W.P.R., F. Rozi, and F. Sukmana, “Prediksi Penjualan Produk Unilever Menggunakan Metode K-Nearest Neighbor,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 155–160, 2021.
kue tradisional khas Aceh, “Klasifikasi Penjualan Obat Pertanian Laris dan Kurang Laris Pada UD Cahaya Tani Menggunakan Decision Tree,†Infotek J. Inform. dan Teknol., vol. 8, no. 5, p. 55, 2019.
M. Muhathir and M. H. Santoso, “Analysis Naïve Bayes In Classifying Fruit by Utilizing Hog Feature Extraction,†J. Informatics Telecommun. Eng., vol. 4, no. 1, pp. 151–160, 2020.
E. Ismanto and M. Novalia, “Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas,†Techno.Com, vol. 20, no. 3, pp. 400–410, 2021.
D. Rolon-Mérette, M. Ross, T. Rolon-Mérette, and K. Church, “Introduction to Anaconda and Python: Installation and setup,†Quant. Methods Psychol., vol. 16, no. 5, pp. S3–S11, 2020.
J. Shenk, W. Byttner, S. Nambusubramaniyan, and A. Zoeller, “Traja: A Python toolbox for animal trajectory analysis,†J. Open Source Softw., vol. 6, no. 63, p. 3202, 2021.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).