Data Mining Dalam Penentuan Pemesanan Buku Perpustakaan UAD dengan Menggunakan Metode Naïve Bayes
DOI:
https://doi.org/10.30865/mib.v6i4.4381Keywords:
Mining, Naïve Bayes, Confussion MatrixAbstract
Library Universitas Ahmad Dahlan (UAD) has not utilized technology in the book ordering process. The process of ordering books from distributors requires many considerations such as the number of requests, recommendations for study programs, location, year and language. This consideration made the UAD Library take more than 2 weeks in the book selection process. This study aims to apply data mining in determining book orders using the Naïve Bayes method. This study uses 1106 book procurement data for the past year with criteria, namely the number of requests, study program recommendations, location, year, and language. Implementation of data mining using the Naïve Bayes algorithm is carried out in stages including data cleaning, data selection, data transformation, sharing of training data and data testing, implementation and results of the Nave Bayes algorithm and system testing. System testing using the Confusion Matrix method. Based on the Confussion Matrix calculation on the testing data, the accuracy is 90.24%, the precision is 89.69%, the recall is 93.54%, the specificity is 91.04%, and the F1 score is 91.57%. It was concluded that the system test results were said to be good.References
S. Setiawansyah, D. A. Megawaty, D. Alita, and P. S. Dewi, “PENERAPAN DIGITAL LIBRARY UNTUK OTOMATISASI ADMINISTRASI PERPUSTAKAAN,†Journal of Social Sciences and Technology for Community Service (JSSTCS), vol. 2, no. 2, pp. 121–127, Sep. 2021, doi: 10.33365/jsstcs.v2i2.1366.
M. M. E. I. Bali, “Implementasi Media Pembelajaran Berbasis Teknologi Informasi dan Komunikasi dalam Distance Learning,†Jurnal Tarbiyatuna : Kajian Pendidikan Islam, vol. 3, no. 1, Art. no. 1, Jan. 2019, doi: 10.29062/tarbiyatuna.v3i1.198.
H. Lubis and D. B. Srisulistiowati, “Implementasi Sistem Data Mining Untuk Menentukan Stock Accuracy Pada Warehouse PT Coca-Cola Amatil Indonesia Cibitung–Plant,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 1, Art. no. 1, Jan. 2020, doi: 10.30865/mib.v4i1.1795.
N. Novianti, M. Zarlis, and P. Sihombing, “Penerapan Algoritma Adaboost Untuk Peningkatan Kinerja Klasifikasi Data Mining Pada Imbalance Dataset Diabetes,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, Art. no. 2, Apr. 2022, doi: 10.30865/mib.v6i2.4017.
A. F. Watratan, A. P. B, and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,†Journal of Applied Computer Science and Technology, vol. 1, no. 1, Art. no. 1, Jul. 2020, doi: 10.52158/jacost.v1i1.9.
M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†Creative Information Technology Journal, vol. 4, no. 2, Art. no. 2, Jan. 2018, doi: 10.24076/citec.2017v4i2.106.
A. H. Nasyuha and H. Hafizah, “Implementasi Teorema Bayes Dalam Diagnosa Penyakit Ayam Broiler,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 4, Art. no. 4, Oct. 2020, doi: 10.30865/mib.v4i4.2366.
L. Yu et al., “Better Document-Level Machine Translation with Bayes’ Rule,†Transactions of the Association for Computational Linguistics, vol. 8, pp. 346–360, Jun. 2020, doi: 10.1162/tacl_a_00319.
R. D. Pambudi, A. A. Supianto, and N. Y. Setiawan, “Prediksi Kelulusan Mahasiswa Berdasarkan Kinerja Akademik Menggunakan Pendekatan Data Mining Pada Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Brawijaya,†p. 7.
I. K. Syahputra, F. A. Bachtiar, and S. A. Wicaksono, “Implementasi Data Mining untuk Prediksi Mahasiswa Pengambil Mata Kuliah dengan Algoritme Naive Bayes,†p. 9.
metatags generator, “Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi),†Apr. 2018, Accessed: Aug. 08, 2022. [Online]. Available: http://www.jurnal.iaii.or.id/index.php/RESTI/article/view/276
R. Thaniket, K. Kusrini, and E. T. Luthf, “PREDIKSI KELULUSAN MAHASISWA TEPAT WAKTU MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,†Jurnal FATEKSA : Jurnal Teknologi dan Rekayasa, vol. 5, no. 2, Art. no. 2, Oct. 2020.
A. Dogan and D. Birant, “Machine learning and data mining in manufacturing,†Expert Systems with Applications, vol. 166, p. 114060, Mar. 2021, doi: 10.1016/j.eswa.2020.114060.
R. O. Aluko, E. I. Daniel, O. Shamsideen Oshodi, C. O. Aigbavboa, and A. O. Abisuga, “Towards reliable prediction of academic performance of architecture students using data mining techniques,†Journal of Engineering, Design and Technology, vol. 16, no. 3, pp. 385–397, Jan. 2018, doi: 10.1108/JEDT-08-2017-0081.
“Spatial Correction of Multimodel Ensemble Subseasonal Precipitation Forecasts over North America Using Local Laplacian Eigenfunctions in: Monthly Weather Review Volume 148 Issue 2 (2020).†https://journals.ametsoc.org/view/journals/mwre/148/2/mwr-d-19-0134.1.xml (accessed Jun. 27, 2022).
J. Zhou, D. Zhang, P. Zou, W. Zhang, and W. Zhang, “Retinex-Based Laplacian Pyramid Method for Image Defogging,†IEEE Access, vol. 7, pp. 122459–122472, 2019, doi: 10.1109/ACCESS.2019.2934981.
L. J. Bernstein, K. Edelstein, A. Sharma, and C. Alain, “Chemo-brain: An activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies,†Neuroscience & Biobehavioral Reviews, vol. 130, pp. 314–325, Nov. 2021, doi: 10.1016/j.neubiorev.2021.08.024.
G. Xu et al., “Clinical Pathway for Early Diagnosis of COVID-19: Updates from Experience to Evidence-Based Practice,†Clinic Rev Allerg Immunol, vol. 59, no. 1, pp. 89–100, Aug. 2020, doi: 10.1007/s12016-020-08792-8.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).