Algoritma K-Nearest Neighbors dan Synthetic Minority Oversampling Technique dalam Prediksi Pemesanan Tiket Pesawat

Authors

  • Wulan Suci Universitas Islam Negeri Sumatera Utara, Medan
  • Samsudin Samsudin Universitas Islam Negeri Sumatera Utara, Medan

DOI:

https://doi.org/10.30865/mib.v6i3.4374

Keywords:

Classification, K-Nearest Neighbors, Synthetic Minority Oversampling Technique, Performance, Canceled Ticketing

Abstract

This study applies the Synthetic Minority Oversampling Technique to improve the performance of the K-Nearest Neighbors method in predicting the unbalanced data class. Most classification algorithms implicitly assume that the processed data has a balanced distribution, so that the standard classifier is more inclined towards data with a dominant class number (majority class). The use of Synthetic Minority Oversampling Technique can improve the performance of the K-Nearest Neighbors method for flight ticket booking data. Although in terms of accuracy, Synthetic Minority Oversampling Technique with K-Nearest Neighbors is lower at 79.65% compared to K-Nearest Neighbors without using Synthetic Minority Oversampling Technique, which is 97.81%, the suggested technique did not improve but from other performance, The proposed method can outperform K-Nearest Neighbors by using Synthetic Minority Oversampling Technique in terms of precision, recall, and F1-Score when applied to the Airline Ticket Booking dataset. Precision increased 18.00% from 62.00% to 80.00%, recall increased 28.00% from 52.00% to 80.00%, and F1-Score increased 27.00% from 53.00% to 80 ,00% on the flight ticket booking dataset.

References

R. D. Fitriani, H. Yasin, and T. Tarno, “PENANGANAN KLASIFIKASI KELAS DATA TIDAK SEIMBANG DENGAN RANDOM OVERSAMPLING PADA NAIVE BAYES (Studi Kasus: Status Peserta KB IUD di Kabupaten Kendal),†J. Gaussian, vol. 10, no. 1, pp. 11–20, 2021, doi: 10.14710/j.gauss.v10i1.30243.

T. Triase and S. Samsudin, “Implementasi Data Mining dalam Mengklasifikasikan UKT (Uang Kuliah Tunggal) pada UIN Sumatera Utara Medan,†J. Teknol. Inf., vol. 4, no. 2, pp. 370–376, 2020, doi: 10.36294/jurti.v4i2.1711.

F. D. Pratama, I. Zufria, and T. Triase, “Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar,†Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 77–84, 2022, doi: 10.36341/rabit.v7i1.2217.

A. N. Kasanah, Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam,†RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 10, 2019.

M. Sulistiyono, Y. Pristyanto, S. Adi, and G. Gumelar, “Implementasi Algoritma Synthetic Minority Over-Sampling Technique untuk Menangani Ketidakseimbangan Kelas pada Dataset Klasifikasi,†Sistemasi, vol. 10, no. 2, p. 445, 2021, doi: 10.32520/stmsi.v10i2.1303.

E. Sutoyo and M. A. Fadlurrahman, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network,†J. Edukasi dan Penelit. Inform., vol. 6, no. 3, p. 379, 2020, doi: 10.26418/jp.v6i3.42896.

F. Dwi Astuti, Femi and Nova Lenti, “Implementasi SMOTE untuk mengatasi,†JUPITER (Jurnal Penelit. Ilmu dan Teknol. Komputer), vol. 13, pp. 89–98, 2021.

N. Z. Dina and R. S. Marjianto, “PREDIKSI PENENTUAN PENERIMA BEASISWA DENGAN METODE KNEAREST NEIGHBOURS (Studi Kasus: Program Studi Sistem Informasi Fakultas Vokasi Universitas Airlangga),†InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 2, no. 2, pp. 135–139, 2018, doi: 10.30743/infotekjar.v2i2.269.

P. Butka, P. Bednár, and J. IvanÄáková, “Methodologies for Knowledge Discovery Processes in Context of AstroGeoInformatics,†in Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics, 2020, pp. 1–20.

R. Perangin-angin, E. J. G. Harianja, and I. K. Jaya, “Pendekatan Level Data untuk Menangani Ketidakseimbangan Data Menggunakan Algoritma K-Nearest Neighbor,†J. TIMES, vol. IX, no. 1, pp. 22–32, 2020, [Online]. Available: https://ejournal.stmik-time.ac.id/index.php/jurnalTIMES/article/view/615.

H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE for handling class imbalance in the classification of diabetes with C4.5, SVM, and naive Bayes,†J. Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 89–93, 2020, doi: 10.14710/jtsiskom.8.2.2020.89-93.

K. U. Syaliman, “Enhance the Accuracy of K-Nearest Neighbor ( K-Nn ) for Unbalanced Class Data Using Synthetic Minority Oversampling Technique ( Smote ) and Gain Ratio ( Gr ),†vol. 10, no. 1, pp. 188–195, 2021.

R. N. Yusra and O. S. Sitompul, “InfoTekJar : Jurnal Nasional Informatika dan Kombinasi K-Nearest Neighbor ( KNN ) dan Relief-F Untuk Meningkatkan Akurasi Pada Klasifikasi Data,†vol. 1, pp. 0–5, 2021.

I. Darmayanti, P. Subarkah, L. R. Anunggilarso, and J. Suhaman, “Prediksi Potensi Siswa Putus Sekolah Akibat Pandemi Covid-19 Menggunakan Algoritme K-Nearest Neighbor,†J. Sains Teknol., vol. 10, no. 2, pp. 230–238, 2021.

S. Ulya, M. A. Soeleman, and F. Budiman, “Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan Pembangunan Desa,†Techno.Com, vol. 20, no. 1, pp. 83–96, 2021, doi: 10.33633/tc.v20i1.4215.

R. Rahayu Marlis, Abdullah, and F. Yunita, “Sistem Prediksi Kualitas Kopra Putih Menggunakan k-Nearest Neighbor (k-NN),†Sist. J. Sist. Inf., vol. 10, no. 2, pp. 290–299, 2021, [Online]. Available: http://sistemasi.ftik.unisi.ac.id.

A. A. Nababan, M. Khairi, and B. S. Harahap, “Implementation of K-Nearest Neighbors ( KNN ) Algorithm in Classification of Data Water Quality,†vol. 6, no. 36, pp. 30–35, 2022.

Downloads

Published

2022-07-25

Issue

Section

Articles