Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining
DOI:
https://doi.org/10.30865/mib.v6i3.4332Keywords:
Information Systems, Preprocessing, Text Mining, Data ProcessingAbstract
Technological developments make the distribution of the amount of data more and more and continue to grow every day, these developments can be used to mine data which can later be processed into text/information needed for its use. Preprocessing is part of text mining where the process is divided into several stages, namely case folding, symbol removal, slangword conversion, stopword removal, stemming and tokenization. The news obtained is raw data from the xlm file from google alert which is then inputted into a system developed using the PHP programming language and mysql database. The data processing method in this research is Electronic Data Processing. The use of this system is expected to help the data preprocessing process where the process takes a long time, especially if a large sample of data is needed. The results of the study showed that a crawling process data processing information system for 20 data records only takes 0.0079004486401876 Mins and the data cleaning process or preprocessing for 88 data records only takes 0.012900729974111 Mins. In other words, data processing using the system is more effective and efficient for the next process.References
A. R. Nour, “Text Mining Dengan Metode Naive Bayes Classifier Untuk Mengklasifikasikan Berita Berdasarkan Konten,†Institut Teknologi Sepuluh Nopember, 2018. [Online]. Available: https://repository.its.ac.id/51007/
D. Rustiana and N. Rahayu, “Analisis Sentimen Pasar Otomotif Mobil: Tweet Twitter Menggunakan Naïve Bayes,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 1, pp. 113–120, 2017, doi: 10.24176/simet.v8i1.841.
A. Prawiransyah, “Klasifikasi Konten Berita Politik, Ekonomi Dan Teknologi Pada Portal Berita Menggunakan Metode Naïve Bayes Classifier,†Universitas Budi Luhur, 2021.
A. Y. Rofiqi, “Clustering Berita Olahraga Berbahasa Indonesia Menggunakan Metode K-Medoid Bersyarat,†J. Simantec, vol. 6, no. 1, pp. 25–32, 2017.
A. Abhishta, R. Joosten, W. Kamerman, and L. J. M. Nieuwenhuis, “Collecting Contextual Information About a DDoS Attack Event Using Google Alerts,†40th IEEE Symp. Secur. Priv. 2019, no. June, pp. 4–6, 2019, doi: 10.13140/RG.2.2.29545.95845.
S. Adinugroho and Y. S. Arum, Implementasi Data Mining Menggunakan Weka, Cetakan Pe. Malang: UB Press, 2018.
F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 1, pp. 19–25, 2017, doi: 10.29207/resti.v1i1.11.
D. Wahyudi, T. Susyanto, and D. Nugroho, “Implementasi Dan Analisis Algoritma Stemming Nazief & Adriani Dan Porter Pada Dokumen Berbahasa Indonesia,†J. Ilm. SINUS, vol. 15, no. 2, pp. 49–56, 2017, doi: 10.30646/sinus.v15i2.305.
L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,†J. Sist. dan Teknol. Inf., vol. 8, no. 2, p. 183, 2020, doi: 10.26418/justin.v8i2.36776.
S. Wahyudiono, T. Yusnanto, and Kanafi, Pengolahan Data Elektronik(Mengenal dan Memahami Data Secara Elektronik), Cetakan Pe. Padang: PT Global Eksekutif Teknologi, 2022.
A. T. Salsabilla, M. Hendayun, and C. Hendriyani, “Penggunaan Aplikasi ACMT dan AP2T Dalam Proses Pembuatan Rekening Pelanggan di PT. PLN (Persero) UP3 Bandung,†J. Sekr. Adm. Bisnis, vol. 6, no. 1, p. 1, 2022, doi: 10.31104/jsab.v6i1.207.
S. Khomsah and Agus Sasmito Aribowo, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,†Rekayasa Sist. dan Teknol. Informasi, RESTI, vol. 4, no. 10, pp. 648–654, 2020.
L. Hermawan and M. Bellaniar Ismiati, “Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval,†J. Transform., vol. 17, no. 2, p. 188, 2020, doi: 10.26623/transformatika.v17i2.1705.
L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,†Indones. J. Appl. Stat., vol. 2, no. 1, p. 34, 2019, doi: 10.13057/ijas.v2i1.29998.
S. F. Handayani, R. W. Pratiwi, and M. Putriyani, “Analisis Sentimen Pada Data Ulasan Twitter Dengan Menggunakan Long Short Term Memory,†Politeknik Harapan Bersama, 2021.
I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 187, 2017, doi: 10.22146/ijccs.24716.
G. Ngurah, M. Nata, and P. P. Yudiastra, “Preprocessing Text Mining Pada Email Box Berbahasa Indonesia,†Konf. Nas. Sist. Inform. 2017, pp. 479–483, 2017.
A. B. Tri and I. Yiliandy, Electronic data processing, vol. 3, no. 5. Yogyakarta: Danisa Media, 2015. doi: 10.1080/00039896.1961.10663066.
T. Jamaluddin, M. A. Bijaksana, and I. Asror, “Perbandingan Algoritma Sentencepiece BPE dan Unigram Pada Tokenisasi Artikel Bahasa Indonesia Pendahuluan Studi Terkait,†e-Proceeding Eng., vol. 7, no. 2, pp. 8323–8331, 2020.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).