Analisis Sentimen Ulasan Hotel Bahasa Indonesia Menggunakan Support Vector Machine dan TF-IDF

Authors

  • Vincentius Westley Dimitrius Thomas Universitas Widyatama, Bandung
  • Fitrah Rumaisa Universitas Widyatama, Bandung

DOI:

https://doi.org/10.30865/mib.v6i3.4218

Keywords:

Review, Hotel, Sentiment, SVM, TF-IDF

Abstract

Reviews of a service, especially hotel services, have an important role to play in consumer decisions. Tripadvisor is a guide and reference platform for travelers in finding information about the hotel services in various countries. There are many reviews about hotels on the platform so that readers are difficult to make decisions so it is necessary to conduct a sentiment analysis that aims to dig up information from existing reviews. The initial stage is by labeling (positive, neutral, negative) to the review. Then the preprocessing stage so that the review can be easily processed, then from that stage continued weighting using Term Frequency - Inverse Document Frequency (TF-IDF) using the best parameters, after weighting the data, then the next is the distribution of data into training data, validation and test. The data are entered into the machine learning process using Support Vector Machine (SVM) and obtained the accuracy of the model by 85%. For testing scenarios if not using slang handling get F1-Score by 80% and if not using stopword get F1-Score by 82%. On the evaluation of the performance of the model using K-Fold obtained the best results on the Fold-7 with a precision value of 87%, recall 86%, F1-score 86%, and accuracy of 87%.

References

R. Sarudin, dan Achmad Ismail, “Analisis Online Review Tripadvisor.Com Terhadap Minat Pembelian Produk Jasa Akomodasi Di Hotel Manhattan Tripadvisor.Com Review Online Analysis On The Interest Of Buying Accommodation Services In Hotel Manhattan,†vol. 7, no. 4, pp. 33–43, 2021, doi: 10.30813/.v7i1.2634.

R. R. Chowdhury and A. Deshpande, “An analysis of the impact of reviews on the hotel industry,†Annals of Tropical Medicine and Public Health, vol. 23, no. 17, Nov. 2020, doi: 10.36295/ASRO.2020.231742.

S. A. Amira and M. I. Irawan, “Opinion Analysis of Traveler Based on Tourism Site Review Using Sentiment Analysis,†IPTEK The Journal for Technology and Science, vol. 31, no. 2, p. 223, May 2020, doi: 10.12962/j20882033.v31i2.6338.

V. Elango and G. Narayanan, “Sentiment Analysis for Hotel Reviews.†[Online]. Available: http://cs229.stanford.edu/proj2014/

W. Paulina, F. Abdurrachman Bachtiar, and A. N. Rusydi, “Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Terhadap Kertanegara Premium Guest House Menggunakan Support Vector Machine,†2020. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7155

H. Chyntia Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,†2022. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10908

N. Fitriyah, B. Warsito, D. Asih, and I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM),†JURNAL GAUSSIAN, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932

A. Zaky and S. al Faraby, “Analisis Sentimen Review Produk Kecantikan Berbahasa Indonesia pada Female Daily Menggunakan Support Vector Machine (SVM),†2021. [Online]. Available: https://repository.telkomuniversity.ac.id/pustaka/166597/analisis-sentimen-review-produk-kecantikan-berbahasa-indonesia-pada-female-daily-menggunakan-support-vector-machine-svm-.html

T. K. Shivaprasad and J. Shetty, "Sentiment analysis of product reviews: A review," 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), 2017, pp. 298-301, doi: 10.1109/ICICCT.2017.7975207.

D. Srivastava, L. Bhambhu, and D. K. Srivastava, “Data classification using support vector machine,†2010. [Online]. Available: https://www.researchgate.net/publication/285663733_Data_classification_using_support_vector_machine

H. Nguyen et al., “Comparative Study of Sentiment Analysis with Product Reviews Using Machine Learning and Lexicon-Based Approaches.†[Online]. Available: https://scholar.smu.edu/datasciencereview/vol1/iss4/7

M. N. Saadah, R. W. Atmagi, D. S. Rahayu, and A. Z. Arifin, “Sistem Temu Kembali Dokumen Teks dengan Pembobotan Tf-Idf Dan LCS,†Scientific Journal of Information Technology Departement of Informatics Institut Teknologi Sepuluh November, doi: http://dx.doi.org/10.12962/j24068535.v11i1.a16

V. I. Santoso1, G. Virginia2, and Y. Lukito3, “Penerapan Sentiment Analysis Pada Hasil Evaluasi Dosen Dengan Metode Support Vector Machine,†JURNAL TRANSFORMATIKA, vol. 14, no. 2, 2017, doi: http://dx.doi.org/10.26623/transformatika.v14i2.439

I. P. A. M. Utama, S. S. Prasetyowati, and Y. Sibaroni, “Multi-Aspect Sentiment Analysis Hotel Review Using RF, SVM, and Naïve Bayes based Hybrid Classifier,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 630, Apr. 2021, doi: 10.30865/mib.v5i2.2959.

Fatihah Rahmadayana and Yuliant Sibaroni, “Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 936–942, Oct. 2021, doi: 10.29207/resti.v5i5.3457.

P. A. Octaviani, Y. Wilandari, and D. Ispriyanti, “Penerapan Metode Klasifikasi Support Vector Machine (Svm) Pada Data Akreditasi Sekolah Dasar (Sd) Di Kabupaten Magelang,†vol. 3, no. 4, pp. 811–820, 2014, doi: https://doi.org/10.14710/j.gauss.v3i4.8092

F. Tempola, M. Muhammad, and A. Khairan, “Perbandingan Klasifikasi Antara Knn Dan Naive Bayes Pada Penentuan Status Gunung Berapi Dengan K-Fold Cross Validation Comparison Of Classification Between Knn And Naive Bayes At The Determination Of The Volcanic Status With K-Fold Cross Validation,†vol. 5, no. 5, pp. 577–584, 2018, doi: 10.25126/jtiik20185983.

Downloads

Published

2022-07-25

Issue

Section

Articles