Market Basket Analysis Menggunakan Association Rule dan Algoritma Apriori Pada Produk Penjualan Mitra Swalayan Salatiga
DOI:
https://doi.org/10.30865/mib.v6i3.4217Keywords:
Market Basket Analysis, Algoritma Apriori, Data Minig, ConfidenceAbstract
Market Basket analysis is learning to manage associations in data processing in various fields. The main purpose of Market Basket analysis in the field of sales is to convey an important message to the company so that it can find out the behavior patterns of entering goods into the shopping basket by consumers so that partners can make a decision. In this study, the Apriori Algorithm is used to take into account changes that occur in the data. This study discusses data mining techniques in analyzing what items are most often purchased at the same time by consumers so that they can change the placement of items that are close together to increase the impulse buying effect. The results obtained are 5 rules where one of the rules obtains the highest confidence value when buying cigarettes, the dominant item is taken simultaneously, namely eggs by obtaining a confidence value that can meet the highest confidence requirements, namely 67%.References
Anggraeni, Hapsari, Dita, dkk. 2018. Analisis Data Transaksi Penjualan Obat Menggunakan Algoritma Apriori : Studi Kasus di Apotik Setya Sehat Semarang. Jurnal Masyarakat Informatika Vol.4, No.7, Oktober 2018, ISSN : 2086-4930.
Aditya. 2018. Penerapan Algoritma Apriori Terhadap Data Penjualan Toko Gudang BM. ISSN : 2541-3619.
Elisa, Erlin. 2018. Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori. Jurnal Rekayasa Sistem dan Teknologi Informasi (RESTI): Vol. 2, No. 2 472-478.
Panjaitan, Feresia. 2020. Analisi Market Basket Dengan Algoritma Hash-Based Pada Transaksi Penjualan (Studi Kasus: TB. Menara). Jurnal Teknologi dan Sistem Informasi (JTSI): Vol. 1, No. 2 111-119.
P. Tana, Mateus. 2018. Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. Jurnal Informatika Merdeka Pasuruan (JIMP): Vol. 3, No. 2.
Kusrini, Luthfi, Emha, dkk. 2019. Algoritma Data Minig. Yogyakarta : C.V ANDI.
Siregar, Amril Mutoi & Puspabhuana, dkk. 2017. Data Mining untuk pengolahan Data Menjadi Informasi Menggunakan Rapidminer. Surakarta : CV. Kekata Group
Sulianta Feri, Juju. 2019. Data Mining Meramlkan Bisis Perusahaan. Jakarta : PT Elex Media Komputindo.
Vulandari Tri. 2017. Data Mining Terori dan Aplikasi Rapid Miner. Yogyakarta : Gava Media. Wokas, Dian, dkk. 2018. Implementasi Market Basket Analysis Untuk Mendukung Strategi
Penjualan Pada Minimarket Winkel Berbasis Algoritma Apriori. Jurnal SNAPTI.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).